/* Copyright 2002-2017 CS Systèmes d'Information * Licensed to CS Systèmes d'Information (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.orekit.propagation; import java.io.Serializable; import java.util.ArrayList; import java.util.Collections; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.stream.Stream; import org.hipparchus.analysis.interpolation.HermiteInterpolator; import org.hipparchus.exception.LocalizedCoreFormats; import org.hipparchus.exception.MathIllegalStateException; import org.hipparchus.geometry.euclidean.threed.Rotation; import org.hipparchus.geometry.euclidean.threed.Vector3D; import org.hipparchus.util.FastMath; import org.orekit.attitudes.Attitude; import org.orekit.attitudes.LofOffset; import org.orekit.errors.OrekitException; import org.orekit.errors.OrekitExceptionWrapper; import org.orekit.errors.OrekitIllegalArgumentException; import org.orekit.errors.OrekitMessages; import org.orekit.frames.Frame; import org.orekit.frames.LOFType; import org.orekit.frames.Transform; import org.orekit.orbits.Orbit; import org.orekit.time.AbsoluteDate; import org.orekit.time.TimeInterpolable; import org.orekit.time.TimeShiftable; import org.orekit.time.TimeStamped; import org.orekit.utils.TimeStampedAngularCoordinates; import org.orekit.utils.TimeStampedPVCoordinates; /** This class is the representation of a complete state holding orbit, attitude * and mass information at a given date. * * <p>It contains an {@link Orbit orbital state} at a current * {@link AbsoluteDate} both handled by an {@link Orbit}, plus the current * mass and attitude. Orbit and state are guaranteed to be consistent in terms * of date and reference frame. The spacecraft state may also contain additional * states, which are simply named double arrays which can hold any user-defined * data. * </p> * <p> * The state can be slightly shifted to close dates. This shift is based on * a simple keplerian model for orbit, a linear extrapolation for attitude * taking the spin rate into account and no mass change. It is <em>not</em> * intended as a replacement for proper orbit and attitude propagation but * should be sufficient for either small time shifts or coarse accuracy. * </p> * <p> * The instance <code>SpacecraftState</code> is guaranteed to be immutable. * </p> * @see org.orekit.propagation.numerical.NumericalPropagator * @author Fabien Maussion * @author Véronique Pommier-Maurussane * @author Luc Maisonobe */ public class SpacecraftState implements TimeStamped, TimeShiftable<SpacecraftState>, TimeInterpolable<SpacecraftState>, Serializable { /** Serializable UID. */ private static final long serialVersionUID = 20130407L; /** Default mass. */ private static final double DEFAULT_MASS = 1000.0; /** * tolerance on date comparison in {@link #checkConsistency(Orbit, Attitude)}. 100 ns * corresponds to sub-mm accuracy at LEO orbital velocities. */ private static final double DATE_INCONSISTENCY_THRESHOLD = 100e-9; /** Orbital state. */ private final Orbit orbit; /** Attitude. */ private final Attitude attitude; /** Current mass (kg). */ private final double mass; /** Additional states. */ private final Map<String, double[]> additional; /** Build a spacecraft state from orbit only. * <p>Attitude and mass are set to unspecified non-null arbitrary values.</p> * @param orbit the orbit * @exception OrekitException if default attitude cannot be computed */ public SpacecraftState(final Orbit orbit) throws OrekitException { this(orbit, new LofOffset(orbit.getFrame(), LOFType.VVLH).getAttitude(orbit, orbit.getDate(), orbit.getFrame()), DEFAULT_MASS, null); } /** Build a spacecraft state from orbit and attitude provider. * <p>Mass is set to an unspecified non-null arbitrary value.</p> * @param orbit the orbit * @param attitude attitude * @exception IllegalArgumentException if orbit and attitude dates * or frames are not equal */ public SpacecraftState(final Orbit orbit, final Attitude attitude) throws IllegalArgumentException { this(orbit, attitude, DEFAULT_MASS, null); } /** Create a new instance from orbit and mass. * <p>Attitude law is set to an unspecified default attitude.</p> * @param orbit the orbit * @param mass the mass (kg) * @exception OrekitException if default attitude cannot be computed */ public SpacecraftState(final Orbit orbit, final double mass) throws OrekitException { this(orbit, new LofOffset(orbit.getFrame(), LOFType.VVLH).getAttitude(orbit, orbit.getDate(), orbit.getFrame()), mass, null); } /** Build a spacecraft state from orbit, attitude provider and mass. * @param orbit the orbit * @param attitude attitude * @param mass the mass (kg) * @exception IllegalArgumentException if orbit and attitude dates * or frames are not equal */ public SpacecraftState(final Orbit orbit, final Attitude attitude, final double mass) throws IllegalArgumentException { this(orbit, attitude, mass, null); } /** Build a spacecraft state from orbit only. * <p>Attitude and mass are set to unspecified non-null arbitrary values.</p> * @param orbit the orbit * @param additional additional states * @exception OrekitException if default attitude cannot be computed */ public SpacecraftState(final Orbit orbit, final Map<String, double[]> additional) throws OrekitException { this(orbit, new LofOffset(orbit.getFrame(), LOFType.VVLH).getAttitude(orbit, orbit.getDate(), orbit.getFrame()), DEFAULT_MASS, additional); } /** Build a spacecraft state from orbit and attitude provider. * <p>Mass is set to an unspecified non-null arbitrary value.</p> * @param orbit the orbit * @param attitude attitude * @param additional additional states * @exception IllegalArgumentException if orbit and attitude dates * or frames are not equal */ public SpacecraftState(final Orbit orbit, final Attitude attitude, final Map<String, double[]> additional) throws IllegalArgumentException { this(orbit, attitude, DEFAULT_MASS, additional); } /** Create a new instance from orbit and mass. * <p>Attitude law is set to an unspecified default attitude.</p> * @param orbit the orbit * @param mass the mass (kg) * @param additional additional states * @exception OrekitException if default attitude cannot be computed */ public SpacecraftState(final Orbit orbit, final double mass, final Map<String, double[]> additional) throws OrekitException { this(orbit, new LofOffset(orbit.getFrame(), LOFType.VVLH).getAttitude(orbit, orbit.getDate(), orbit.getFrame()), mass, additional); } /** Build a spacecraft state from orbit, attitude provider and mass. * @param orbit the orbit * @param attitude attitude * @param mass the mass (kg) * @param additional additional states (may be null if no additional states are available) * @exception IllegalArgumentException if orbit and attitude dates * or frames are not equal */ public SpacecraftState(final Orbit orbit, final Attitude attitude, final double mass, final Map<String, double[]> additional) throws IllegalArgumentException { checkConsistency(orbit, attitude); this.orbit = orbit; this.attitude = attitude; this.mass = mass; if (additional == null) { this.additional = Collections.emptyMap(); } else { this.additional = new HashMap<String, double[]>(additional.size()); for (final Map.Entry<String, double[]> entry : additional.entrySet()) { this.additional.put(entry.getKey(), entry.getValue().clone()); } } } /** Add an additional state. * <p> * {@link SpacecraftState SpacecraftState} instances are immutable, * so this method does <em>not</em> change the instance, but rather * creates a new instance, which has the same orbit, attitude, mass * and additional states as the original instance, except it also * has the specified state. If the original instance already had an * additional state with the same name, it will be overridden. If it * did not have any additional state with that name, the new instance * will have one more additional state than the original instance. * </p> * @param name name of the additional state * @param value value of the additional state * @return a new instance, with the additional state added * @see #hasAdditionalState(String) * @see #getAdditionalState(String) * @see #getAdditionalStates() */ public SpacecraftState addAdditionalState(final String name, final double... value) { final Map<String, double[]> newMap = new HashMap<String, double[]>(additional.size() + 1); newMap.putAll(additional); newMap.put(name, value.clone()); return new SpacecraftState(orbit, attitude, mass, newMap); } /** Check orbit and attitude dates are equal. * @param orbit the orbit * @param attitude attitude * @exception IllegalArgumentException if orbit and attitude dates * are not equal */ private static void checkConsistency(final Orbit orbit, final Attitude attitude) throws IllegalArgumentException { if (FastMath.abs(orbit.getDate().durationFrom(attitude.getDate())) > DATE_INCONSISTENCY_THRESHOLD) { throw new OrekitIllegalArgumentException(OrekitMessages.ORBIT_AND_ATTITUDE_DATES_MISMATCH, orbit.getDate(), attitude.getDate()); } if (orbit.getFrame() != attitude.getReferenceFrame()) { throw new OrekitIllegalArgumentException(OrekitMessages.FRAMES_MISMATCH, orbit.getFrame().getName(), attitude.getReferenceFrame().getName()); } } /** Get a time-shifted state. * <p> * The state can be slightly shifted to close dates. This shift is based on * a simple keplerian model for orbit, a linear extrapolation for attitude * taking the spin rate into account and neither mass nor additional states * changes. It is <em>not</em> intended as a replacement for proper orbit * and attitude propagation but should be sufficient for small time shifts * or coarse accuracy. * </p> * <p> * As a rough order of magnitude, the following table shows the extrapolation * errors obtained between this simple shift method and an {@link * org.orekit.propagation.analytical.EcksteinHechlerPropagator Eckstein-Heschler * propagator} for an 800km altitude nearly circular polar Earth orbit with * {@link org.orekit.attitudes.BodyCenterPointing body center pointing}. Beware * that these results may be different for other orbits. * </p> * <table border="1" cellpadding="5"> * <caption>Extrapolation Error</caption> * <tr bgcolor="#ccccff"><th>interpolation time (s)</th> * <th>position error (m)</th><th>velocity error (m/s)</th> * <th>attitude error (°)</th></tr> * <tr><td bgcolor="#eeeeff"> 60</td><td> 20</td><td>1</td><td>0.001</td></tr> * <tr><td bgcolor="#eeeeff">120</td><td> 100</td><td>2</td><td>0.002</td></tr> * <tr><td bgcolor="#eeeeff">300</td><td> 600</td><td>4</td><td>0.005</td></tr> * <tr><td bgcolor="#eeeeff">600</td><td>2000</td><td>6</td><td>0.008</td></tr> * <tr><td bgcolor="#eeeeff">900</td><td>4000</td><td>6</td><td>0.010</td></tr> * </table> * @param dt time shift in seconds * @return a new state, shifted with respect to the instance (which is immutable) * except for the mass which stay unchanged */ public SpacecraftState shiftedBy(final double dt) { return new SpacecraftState(orbit.shiftedBy(dt), attitude.shiftedBy(dt), mass, additional); } /** {@inheritDoc} * <p> * The additional states that are interpolated are the ones already present * in the instance. The sample instances must therefore have at least the same * additional states has the instance. They may have more additional states, * but the extra ones will be ignored. * </p> * <p> * As this implementation of interpolation is polynomial, it should be used only * with small samples (about 10-20 points) in order to avoid <a * href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's phenomenon</a> * and numerical problems (including NaN appearing). * </p> */ public SpacecraftState interpolate(final AbsoluteDate date, final Stream<SpacecraftState> sample) throws OrekitException { // prepare interpolators final List<Orbit> orbits = new ArrayList<>(); final List<Attitude> attitudes = new ArrayList<>(); final HermiteInterpolator massInterpolator = new HermiteInterpolator(); final Map<String, HermiteInterpolator> additionalInterpolators = new HashMap<String, HermiteInterpolator>(additional.size()); for (final String name : additional.keySet()) { additionalInterpolators.put(name, new HermiteInterpolator()); } // extract sample data try { sample.forEach(state -> { try { final double deltaT = state.getDate().durationFrom(date); orbits.add(state.getOrbit()); attitudes.add(state.getAttitude()); massInterpolator.addSamplePoint(deltaT, new double[] { state.getMass() }); for (final Map.Entry<String, HermiteInterpolator> entry : additionalInterpolators.entrySet()) { entry.getValue().addSamplePoint(deltaT, state.getAdditionalState(entry.getKey())); } } catch (OrekitException oe) { throw new OrekitExceptionWrapper(oe); } }); } catch (OrekitExceptionWrapper oew) { throw oew.getException(); } // perform interpolations final Orbit interpolatedOrbit = orbit.interpolate(date, orbits); final Attitude interpolatedAttitude = attitude.interpolate(date, attitudes); final double interpolatedMass = massInterpolator.value(0)[0]; final Map<String, double[]> interpolatedAdditional; if (additional.isEmpty()) { interpolatedAdditional = null; } else { interpolatedAdditional = new HashMap<String, double[]>(additional.size()); for (final Map.Entry<String, HermiteInterpolator> entry : additionalInterpolators.entrySet()) { interpolatedAdditional.put(entry.getKey(), entry.getValue().value(0)); } } // create the complete interpolated state return new SpacecraftState(interpolatedOrbit, interpolatedAttitude, interpolatedMass, interpolatedAdditional); } /** Gets the current orbit. * @return the orbit */ public Orbit getOrbit() { return orbit; } /** Get the date. * @return date */ public AbsoluteDate getDate() { return orbit.getDate(); } /** Get the inertial frame. * @return the frame */ public Frame getFrame() { return orbit.getFrame(); } /** Check if an additional state is available. * @param name name of the additional state * @return true if the additional state is available * @see #addAdditionalState(String, double[]) * @see #getAdditionalState(String) * @see #getAdditionalStates() */ public boolean hasAdditionalState(final String name) { return additional.containsKey(name); } /** Check if two instances have the same set of additional states available. * <p> * Only the names and dimensions of the additional states are compared, * not their values. * </p> * @param state state to compare to instance * @exception OrekitException if either instance or state supports an additional * state not supported by the other one * @exception MathIllegalStateException if an additional state does not have * the same dimension in both states */ public void ensureCompatibleAdditionalStates(final SpacecraftState state) throws OrekitException, MathIllegalStateException { // check instance additional states is a subset of the other one for (final Map.Entry<String, double[]> entry : additional.entrySet()) { final double[] other = state.additional.get(entry.getKey()); if (other == null) { throw new OrekitException(OrekitMessages.UNKNOWN_ADDITIONAL_STATE, entry.getKey()); } if (other.length != entry.getValue().length) { throw new MathIllegalStateException(LocalizedCoreFormats.DIMENSIONS_MISMATCH, other.length, entry.getValue().length); } } if (state.additional.size() > additional.size()) { // the other state has more additional states for (final String name : state.additional.keySet()) { if (!additional.containsKey(name)) { throw new OrekitException(OrekitMessages.UNKNOWN_ADDITIONAL_STATE, name); } } } } /** Get an additional state. * @param name name of the additional state * @return value of the additional state * @exception OrekitException if no additional state with that name exists * @see #addAdditionalState(String, double[]) * @see #hasAdditionalState(String) * @see #getAdditionalStates() */ public double[] getAdditionalState(final String name) throws OrekitException { if (!additional.containsKey(name)) { throw new OrekitException(OrekitMessages.UNKNOWN_ADDITIONAL_STATE, name); } return additional.get(name).clone(); } /** Get an unmodifiable map of additional states. * @return unmodifiable map of additional states * @see #addAdditionalState(String, double[]) * @see #hasAdditionalState(String) * @see #getAdditionalState(String) */ public Map<String, double[]> getAdditionalStates() { return Collections.unmodifiableMap(additional); } /** Compute the transform from orbite/attitude reference frame to spacecraft frame. * <p>The spacecraft frame origin is at the point defined by the orbit, * and its orientation is defined by the attitude.</p> * @return transform from specified frame to current spacecraft frame */ public Transform toTransform() { final AbsoluteDate date = orbit.getDate(); return new Transform(date, new Transform(date, orbit.getPVCoordinates().negate()), new Transform(date, attitude.getOrientation())); } /** Get the central attraction coefficient. * @return mu central attraction coefficient (m^3/s^2) */ public double getMu() { return orbit.getMu(); } /** Get the keplerian period. * <p>The keplerian period is computed directly from semi major axis * and central acceleration constant.</p> * @return keplerian period in seconds */ public double getKeplerianPeriod() { return orbit.getKeplerianPeriod(); } /** Get the keplerian mean motion. * <p>The keplerian mean motion is computed directly from semi major axis * and central acceleration constant.</p> * @return keplerian mean motion in radians per second */ public double getKeplerianMeanMotion() { return orbit.getKeplerianMeanMotion(); } /** Get the semi-major axis. * @return semi-major axis (m) */ public double getA() { return orbit.getA(); } /** Get the first component of the eccentricity vector (as per equinoctial parameters). * @return e cos(ω + Ω), first component of eccentricity vector * @see #getE() */ public double getEquinoctialEx() { return orbit.getEquinoctialEx(); } /** Get the second component of the eccentricity vector (as per equinoctial parameters). * @return e sin(ω + Ω), second component of the eccentricity vector * @see #getE() */ public double getEquinoctialEy() { return orbit.getEquinoctialEy(); } /** Get the first component of the inclination vector (as per equinoctial parameters). * @return tan(i/2) cos(Ω), first component of the inclination vector * @see #getI() */ public double getHx() { return orbit.getHx(); } /** Get the second component of the inclination vector (as per equinoctial parameters). * @return tan(i/2) sin(Ω), second component of the inclination vector * @see #getI() */ public double getHy() { return orbit.getHy(); } /** Get the true latitude argument (as per equinoctial parameters). * @return v + ω + Ω true latitude argument (rad) * @see #getLE() * @see #getLM() */ public double getLv() { return orbit.getLv(); } /** Get the eccentric latitude argument (as per equinoctial parameters). * @return E + ω + Ω eccentric latitude argument (rad) * @see #getLv() * @see #getLM() */ public double getLE() { return orbit.getLE(); } /** Get the mean latitude argument (as per equinoctial parameters). * @return M + ω + Ω mean latitude argument (rad) * @see #getLv() * @see #getLE() */ public double getLM() { return orbit.getLM(); } // Additional orbital elements /** Get the eccentricity. * @return eccentricity * @see #getEquinoctialEx() * @see #getEquinoctialEy() */ public double getE() { return orbit.getE(); } /** Get the inclination. * @return inclination (rad) * @see #getHx() * @see #getHy() */ public double getI() { return orbit.getI(); } /** Get the {@link TimeStampedPVCoordinates} in orbit definition frame. * Compute the position and velocity of the satellite. This method caches its * results, and recompute them only when the method is called with a new value * for mu. The result is provided as a reference to the internally cached * {@link TimeStampedPVCoordinates}, so the caller is responsible to copy it in a separate * {@link TimeStampedPVCoordinates} if it needs to keep the value for a while. * @return pvCoordinates in orbit definition frame */ public TimeStampedPVCoordinates getPVCoordinates() { return orbit.getPVCoordinates(); } /** Get the {@link TimeStampedPVCoordinates} in given output frame. * Compute the position and velocity of the satellite. This method caches its * results, and recompute them only when the method is called with a new value * for mu. The result is provided as a reference to the internally cached * {@link TimeStampedPVCoordinates}, so the caller is responsible to copy it in a separate * {@link TimeStampedPVCoordinates} if it needs to keep the value for a while. * @param outputFrame frame in which coordinates should be defined * @return pvCoordinates in orbit definition frame * @exception OrekitException if the transformation between frames cannot be computed */ public TimeStampedPVCoordinates getPVCoordinates(final Frame outputFrame) throws OrekitException { return orbit.getPVCoordinates(outputFrame); } /** Get the attitude. * @return the attitude. */ public Attitude getAttitude() { return attitude; } /** Gets the current mass. * @return the mass (kg) */ public double getMass() { return mass; } /** Replace the instance with a data transfer object for serialization. * @return data transfer object that will be serialized */ private Object writeReplace() { return new DTO(this); } /** Internal class used only for serialization. */ private static class DTO implements Serializable { /** Serializable UID. */ private static final long serialVersionUID = 20140617L; /** Orbit. */ private final Orbit orbit; /** Attitude and mass double values. */ private double[] d; /** Additional states. */ private final Map<String, double[]> additional; /** Simple constructor. * @param state instance to serialize */ private DTO(final SpacecraftState state) { this.orbit = state.orbit; this.additional = state.additional.isEmpty() ? null : state.additional; final Rotation rotation = state.attitude.getRotation(); final Vector3D spin = state.attitude.getSpin(); final Vector3D rotationAcceleration = state.attitude.getRotationAcceleration(); this.d = new double[] { rotation.getQ0(), rotation.getQ1(), rotation.getQ2(), rotation.getQ3(), spin.getX(), spin.getY(), spin.getZ(), rotationAcceleration.getX(), rotationAcceleration.getY(), rotationAcceleration.getZ(), state.mass }; } /** Replace the deserialized data transfer object with a {@link SpacecraftState}. * @return replacement {@link SpacecraftState} */ private Object readResolve() { return new SpacecraftState(orbit, new Attitude(orbit.getFrame(), new TimeStampedAngularCoordinates(orbit.getDate(), new Rotation(d[0], d[1], d[2], d[3], false), new Vector3D(d[4], d[5], d[6]), new Vector3D(d[7], d[8], d[9]))), d[10], additional); } } }