/*** * ASM: a very small and fast Java bytecode manipulation framework * Copyright (c) 2000-2005 INRIA, France Telecom * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ package org.objectweb.asm.tree.analysis; import java.util.ArrayList; import java.util.List; import org.objectweb.asm.Opcodes; import org.objectweb.asm.Label; import org.objectweb.asm.Type; import org.objectweb.asm.tree.AbstractInsnNode; import org.objectweb.asm.tree.IincInsnNode; import org.objectweb.asm.tree.JumpInsnNode; import org.objectweb.asm.tree.LabelNode; import org.objectweb.asm.tree.LookupSwitchInsnNode; import org.objectweb.asm.tree.MethodNode; import org.objectweb.asm.tree.TableSwitchInsnNode; import org.objectweb.asm.tree.TryCatchBlockNode; import org.objectweb.asm.tree.VarInsnNode; /** * A semantic bytecode analyzer. * * @author Eric Bruneton */ public class Analyzer implements Opcodes { private Interpreter interpreter; private int n; private IntMap indexes; private List[] handlers; private Frame[] frames; private Subroutine[] subroutines; private boolean[] queued; private int[] queue; private int top; private boolean jsr; /** * Constructs a new {@link Analyzer}. * * @param interpreter the interpreter to be used to symbolically interpret * the bytecode instructions. */ public Analyzer(final Interpreter interpreter) { this.interpreter = interpreter; } /** * Analyzes the given method. * * @param owner the internal name of the class to which the method belongs. * @param m the method to be analyzed. * @return the symbolic state of the execution stack frame at each bytecode * instruction of the method. The size of the returned array is * equal to the number of instructions (and labels) of the method. A * given frame is <tt>null</tt> if and only if the corresponding * instruction cannot be reached (dead code). * @throws AnalyzerException if a problem occurs during the analysis. */ public Frame[] analyze(final String owner, final MethodNode m) throws AnalyzerException { n = m.instructions.size(); indexes = new IntMap(2 * n); handlers = new List[n]; frames = new Frame[n]; subroutines = new Subroutine[n]; queued = new boolean[n]; queue = new int[n]; top = 0; // computes instruction indexes for (int i = 0; i < n; ++i) { Object insn = m.instructions.get(i); if (insn instanceof LabelNode) { insn = ((LabelNode) insn).label; } indexes.put(insn, i); } // computes exception handlers for each instruction for (int i = 0; i < m.tryCatchBlocks.size(); ++i) { TryCatchBlockNode tcb = (TryCatchBlockNode) m.tryCatchBlocks.get(i); int begin = indexes.get(tcb.start); int end = indexes.get(tcb.end); for (int j = begin; j < end; ++j) { List insnHandlers = handlers[j]; if (insnHandlers == null) { insnHandlers = new ArrayList(); handlers[j] = insnHandlers; } insnHandlers.add(tcb); } } // initializes the data structures for the control flow analysis // algorithm Frame current = newFrame(m.maxLocals, m.maxStack); Frame handler = newFrame(m.maxLocals, m.maxStack); Type[] args = Type.getArgumentTypes(m.desc); int local = 0; if ((m.access & ACC_STATIC) == 0) { Type ctype = Type.getType("L" + owner + ";"); current.setLocal(local++, interpreter.newValue(ctype)); } for (int i = 0; i < args.length; ++i) { current.setLocal(local++, interpreter.newValue(args[i])); if (args[i].getSize() == 2) { current.setLocal(local++, interpreter.newValue(null)); } } while (local < m.maxLocals) { current.setLocal(local++, interpreter.newValue(null)); } merge(0, current, null); // control flow analysis while (top > 0) { int insn = queue[--top]; Frame f = frames[insn]; Subroutine subroutine = subroutines[insn]; queued[insn] = false; try { Object o = m.instructions.get(insn); jsr = false; if (o instanceof LabelNode) { merge(insn + 1, f, subroutine); } else { AbstractInsnNode insnNode = (AbstractInsnNode) o; int insnOpcode = insnNode.getOpcode(); current.init(f).execute(insnNode, interpreter); subroutine = subroutine == null ? null : subroutine.copy(); if (insnNode instanceof JumpInsnNode) { JumpInsnNode j = (JumpInsnNode) insnNode; if (insnOpcode != GOTO && insnOpcode != JSR) { merge(insn + 1, current, subroutine); } if (insnOpcode == JSR) { jsr = true; merge(indexes.get(j.label), current, new Subroutine(j.label, m.maxLocals, j)); } else { merge(indexes.get(j.label), current, subroutine); } } else if (insnNode instanceof LookupSwitchInsnNode) { LookupSwitchInsnNode lsi = (LookupSwitchInsnNode) insnNode; merge(indexes.get(lsi.dflt), current, subroutine); for (int j = 0; j < lsi.labels.size(); ++j) { Label label = (Label) lsi.labels.get(j); merge(indexes.get(label), current, subroutine); } } else if (insnNode instanceof TableSwitchInsnNode) { TableSwitchInsnNode tsi = (TableSwitchInsnNode) insnNode; merge(indexes.get(tsi.dflt), current, subroutine); for (int j = 0; j < tsi.labels.size(); ++j) { Label label = (Label) tsi.labels.get(j); merge(indexes.get(label), current, subroutine); } } else if (insnOpcode == RET) { if (subroutine == null) { throw new AnalyzerException("RET instruction outside of a sub routine"); } for (int i = 0; i < subroutine.callers.size(); ++i) { int caller = indexes.get(subroutine.callers.get(i)); merge(caller + 1, frames[caller], current, subroutines[caller], subroutine.access); } } else if (insnOpcode != ATHROW && (insnOpcode < IRETURN || insnOpcode > RETURN)) { if (subroutine != null) { if (insnNode instanceof VarInsnNode) { int var = ((VarInsnNode) insnNode).var; subroutine.access[var] = true; if (insnOpcode == LLOAD || insnOpcode == DLOAD || insnOpcode == LSTORE || insnOpcode == DSTORE) { subroutine.access[var + 1] = true; } } else if (insnNode instanceof IincInsnNode) { int var = ((IincInsnNode) insnNode).var; subroutine.access[var] = true; } } merge(insn + 1, current, subroutine); } } List insnHandlers = handlers[insn]; if (insnHandlers != null) { for (int i = 0; i < insnHandlers.size(); ++i) { TryCatchBlockNode tcb = (TryCatchBlockNode) insnHandlers.get(i); Type type; if (tcb.type == null) { type = Type.getType("Ljava/lang/Throwable;"); } else { type = Type.getType("L" + tcb.type + ";"); } handler.init(f); handler.clearStack(); handler.push(interpreter.newValue(type)); merge(indexes.get(tcb.handler), handler, subroutine); } } } catch (AnalyzerException e) { throw new AnalyzerException("Error at instruction " + insn + ": " + e.getMessage(), e); } catch(Exception e) { throw new AnalyzerException("Error at instruction " + insn + ": " + e.getMessage(), e); } } return frames; } /** * Returns the symbolic stack frame for each instruction of the last * recently analyzed method. * * @return the symbolic state of the execution stack frame at each bytecode * instruction of the method. The size of the returned array is * equal to the number of instructions (and labels) of the method. A * given frame is <tt>null</tt> if the corresponding instruction * cannot be reached, or if an error occured during the analysis of * the method. */ public Frame[] getFrames() { return frames; } /** * Returns the index of the given instruction. * * @param insn a {@link Label} or {@link AbstractInsnNode} of the last * recently analyzed method. * @return the index of the given instruction of the last recently analyzed * method. */ public int getIndex(final Object insn) { return indexes.get(insn); } /** * Returns the exception handlers for the given instruction. * * @param insn the index of an instruction of the last recently analyzed * method. * @return a list of {@link TryCatchBlockNode} objects. */ public List getHandlers(final int insn) { return handlers[insn]; } /** * Constructs a new frame with the given size. * * @param nLocals the maximum number of local variables of the frame. * @param nStack the maximum stack size of the frame. * @return the created frame. */ protected Frame newFrame(final int nLocals, final int nStack) { return new Frame(nLocals, nStack); } /** * Constructs a new frame that is identical to the given frame. * * @param src a frame. * @return the created frame. */ protected Frame newFrame(final Frame src) { return new Frame(src); } /** * Creates a control flow graph edge. The default implementation of this * method does nothing. It can be overriden in order to construct the * control flow graph of a method (this method is called by the * {@link #analyze analyze} method during its visit of the method's code). * * @param frame the frame corresponding to an instruction. * @param successor the frame corresponding to a successor instruction. */ protected void newControlFlowEdge(final Frame frame, final Frame successor) { } // ------------------------------------------------------------------------- private void merge( final int insn, final Frame frame, final Subroutine subroutine) throws AnalyzerException { if (insn > n - 1) { throw new AnalyzerException("Execution can fall off end of the code"); } Frame oldFrame = frames[insn]; Subroutine oldSubroutine = subroutines[insn]; boolean changes = false; if (oldFrame == null) { frames[insn] = newFrame(frame); changes = true; } else { changes |= oldFrame.merge(frame, interpreter); } newControlFlowEdge(frame, oldFrame); if (oldSubroutine == null) { if (subroutine != null) { subroutines[insn] = subroutine.copy(); changes = true; } } else { if (subroutine != null) { changes |= oldSubroutine.merge(subroutine, !jsr); } } if (changes && !queued[insn]) { queued[insn] = true; queue[top++] = insn; } } private void merge( final int insn, final Frame beforeJSR, final Frame afterRET, final Subroutine subroutineBeforeJSR, final boolean[] access) throws AnalyzerException { if (insn > n - 1) { throw new AnalyzerException("Execution can fall off end of the code"); } Frame oldFrame = frames[insn]; Subroutine oldSubroutine = subroutines[insn]; boolean changes = false; afterRET.merge(beforeJSR, access); if (oldFrame == null) { frames[insn] = newFrame(afterRET); changes = true; } else { changes |= oldFrame.merge(afterRET, access); } newControlFlowEdge(afterRET, oldFrame); if (oldSubroutine == null) { if (subroutineBeforeJSR != null) { subroutines[insn] = subroutineBeforeJSR.copy(); changes = true; } } else { if (subroutineBeforeJSR != null) { changes |= oldSubroutine.merge(subroutineBeforeJSR, !jsr); } } if (changes && !queued[insn]) { queued[insn] = true; queue[top++] = insn; } } }