/* Rijndael.java -- Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc. This file is a part of GNU Classpath. GNU Classpath is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GNU Classpath is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Classpath; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Linking this library statically or dynamically with other modules is making a combined work based on this library. Thus, the terms and conditions of the GNU General Public License cover the whole combination. As a special exception, the copyright holders of this library give you permission to link this library with independent modules to produce an executable, regardless of the license terms of these independent modules, and to copy and distribute the resulting executable under terms of your choice, provided that you also meet, for each linked independent module, the terms and conditions of the license of that module. An independent module is a module which is not derived from or based on this library. If you modify this library, you may extend this exception to your version of the library, but you are not obligated to do so. If you do not wish to do so, delete this exception statement from your version. */ package gnu.javax.crypto.cipher; import gnu.java.security.Configuration; import gnu.java.security.Registry; import gnu.java.security.util.Util; import java.security.InvalidKeyException; import java.util.ArrayList; import java.util.Collections; import java.util.Iterator; import java.util.logging.Logger; /** * Rijndael --pronounced Reindaal-- is the AES. It is a variable block-size * (128-, 192- and 256-bit), variable key-size (128-, 192- and 256-bit) * symmetric key block cipher. * <p> * References: * <ol> * <li><a href="http://www.esat.kuleuven.ac.be/~rijmen/rijndael/">The Rijndael * Block Cipher - AES Proposal</a>.<br> * <a href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a> and * <a href="mailto:daemen.j@protonworld.com">Joan Daemen</a>.</li> * </ol> */ public final class Rijndael extends BaseCipher { private static final Logger log = Logger.getLogger(Rijndael.class.getName()); private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes private static final int DEFAULT_KEY_SIZE = 16; // in bytes private static final String SS = "\u637C\u777B\uF26B\u6FC5\u3001\u672B\uFED7\uAB76" + "\uCA82\uC97D\uFA59\u47F0\uADD4\uA2AF\u9CA4\u72C0" + "\uB7FD\u9326\u363F\uF7CC\u34A5\uE5F1\u71D8\u3115" + "\u04C7\u23C3\u1896\u059A\u0712\u80E2\uEB27\uB275" + "\u0983\u2C1A\u1B6E\u5AA0\u523B\uD6B3\u29E3\u2F84" + "\u53D1\u00ED\u20FC\uB15B\u6ACB\uBE39\u4A4C\u58CF" + "\uD0EF\uAAFB\u434D\u3385\u45F9\u027F\u503C\u9FA8" + "\u51A3\u408F\u929D\u38F5\uBCB6\uDA21\u10FF\uF3D2" + "\uCD0C\u13EC\u5F97\u4417\uC4A7\u7E3D\u645D\u1973" + "\u6081\u4FDC\u222A\u9088\u46EE\uB814\uDE5E\u0BDB" + "\uE032\u3A0A\u4906\u245C\uC2D3\uAC62\u9195\uE479" + "\uE7C8\u376D\u8DD5\u4EA9\u6C56\uF4EA\u657A\uAE08" + "\uBA78\u252E\u1CA6\uB4C6\uE8DD\u741F\u4BBD\u8B8A" + "\u703E\uB566\u4803\uF60E\u6135\u57B9\u86C1\u1D9E" + "\uE1F8\u9811\u69D9\u8E94\u9B1E\u87E9\uCE55\u28DF" + "\u8CA1\u890D\uBFE6\u4268\u4199\u2D0F\uB054\uBB16"; private static final byte[] S = new byte[256]; private static final byte[] Si = new byte[256]; private static final int[] T1 = new int[256]; private static final int[] T2 = new int[256]; private static final int[] T3 = new int[256]; private static final int[] T4 = new int[256]; private static final int[] T5 = new int[256]; private static final int[] T6 = new int[256]; private static final int[] T7 = new int[256]; private static final int[] T8 = new int[256]; private static final int[] U1 = new int[256]; private static final int[] U2 = new int[256]; private static final int[] U3 = new int[256]; private static final int[] U4 = new int[256]; private static final byte[] rcon = new byte[30]; private static final int[][][] shifts = new int[][][] { { { 0, 0 }, { 1, 3 }, { 2, 2 }, { 3, 1 } }, { { 0, 0 }, { 1, 5 }, { 2, 4 }, { 3, 3 } }, { { 0, 0 }, { 1, 7 }, { 3, 5 }, { 4, 4 } } }; /** * KAT vector (from ecb_vk): I=96 * KEY=0000000000000000000000010000000000000000000000000000000000000000 * CT=E44429474D6FC3084EB2A6B8B46AF754 */ private static final byte[] KAT_KEY = Util.toBytesFromString( "0000000000000000000000010000000000000000000000000000000000000000"); private static final byte[] KAT_CT = Util.toBytesFromString( "E44429474D6FC3084EB2A6B8B46AF754"); /** caches the result of the correctness test, once executed. */ private static Boolean valid; static { long time = System.currentTimeMillis(); int ROOT = 0x11B; int i, j = 0; // S-box, inverse S-box, T-boxes, U-boxes int s, s2, s3, i2, i4, i8, i9, ib, id, ie, t; char c; for (i = 0; i < 256; i++) { c = SS.charAt(i >>> 1); S[i] = (byte)(((i & 1) == 0) ? c >>> 8 : c & 0xFF); s = S[i] & 0xFF; Si[s] = (byte) i; s2 = s << 1; if (s2 >= 0x100) s2 ^= ROOT; s3 = s2 ^ s; i2 = i << 1; if (i2 >= 0x100) i2 ^= ROOT; i4 = i2 << 1; if (i4 >= 0x100) i4 ^= ROOT; i8 = i4 << 1; if (i8 >= 0x100) i8 ^= ROOT; i9 = i8 ^ i; ib = i9 ^ i2; id = i9 ^ i4; ie = i8 ^ i4 ^ i2; T1[i] = t = (s2 << 24) | (s << 16) | (s << 8) | s3; T2[i] = (t >>> 8) | (t << 24); T3[i] = (t >>> 16) | (t << 16); T4[i] = (t >>> 24) | (t << 8); T5[s] = U1[i] = t = (ie << 24) | (i9 << 16) | (id << 8) | ib; T6[s] = U2[i] = (t >>> 8) | (t << 24); T7[s] = U3[i] = (t >>> 16) | (t << 16); T8[s] = U4[i] = (t >>> 24) | (t << 8); } // round constants int r = 1; rcon[0] = 1; for (i = 1; i < 30; i++) { r <<= 1; if (r >= 0x100) r ^= ROOT; rcon[i] = (byte) r; } time = System.currentTimeMillis() - time; if (Configuration.DEBUG) { log.fine("Static Data"); log.fine("S[]:"); StringBuilder sb; for (i = 0; i < 16; i++) { sb = new StringBuilder(); for (j = 0; j < 16; j++) sb.append("0x").append(Util.toString(S[i * 16 + j])).append(", "); log.fine(sb.toString()); } log.fine("Si[]:"); for (i = 0; i < 16; i++) { sb = new StringBuilder(); for (j = 0; j < 16; j++) sb.append("0x").append(Util.toString(Si[i * 16 + j])).append(", "); log.fine(sb.toString()); } log.fine("T1[]:"); for (i = 0; i < 64; i++) { sb = new StringBuilder(); for (j = 0; j < 4; j++) sb.append("0x").append(Util.toString(T1[i * 4 + j])).append(", "); log.fine(sb.toString()); } log.fine("T2[]:"); for (i = 0; i < 64; i++) { sb = new StringBuilder(); for (j = 0; j < 4; j++) sb.append("0x").append(Util.toString(T2[i * 4 + j])).append(", "); log.fine(sb.toString()); } log.fine("T3[]:"); for (i = 0; i < 64; i++) { sb = new StringBuilder(); for (j = 0; j < 4; j++) sb.append("0x").append(Util.toString(T3[i * 4 + j])).append(", "); log.fine(sb.toString()); } log.fine("T4[]:"); for (i = 0; i < 64; i++) { sb = new StringBuilder(); for (j = 0; j < 4; j++) sb.append("0x").append(Util.toString(T4[i * 4 + j])).append(", "); log.fine(sb.toString()); } log.fine("T5[]:"); for (i = 0; i < 64; i++) { sb = new StringBuilder(); for (j = 0; j < 4; j++) sb.append("0x").append(Util.toString(T5[i * 4 + j])).append(", "); log.fine(sb.toString()); } log.fine("T6[]:"); for (i = 0; i < 64; i++) { sb = new StringBuilder(); for (j = 0; j < 4; j++) sb.append("0x").append(Util.toString(T6[i * 4 + j])).append(", "); log.fine(sb.toString()); } log.fine("T7[]:"); for (i = 0; i < 64; i++) { sb = new StringBuilder(); for (j = 0; j < 4; j++) sb.append("0x").append(Util.toString(T7[i * 4 + j])).append(", "); log.fine(sb.toString()); } log.fine("T8[]:"); for (i = 0; i < 64; i++) { sb = new StringBuilder(); for (j = 0; j < 4; j++) sb.append("0x").append(Util.toString(T8[i * 4 + j])).append(", "); log.fine(sb.toString()); } log.fine("U1[]:"); for (i = 0; i < 64; i++) { sb = new StringBuilder(); for (j = 0; j < 4; j++) sb.append("0x").append(Util.toString(U1[i * 4 + j])).append(", "); log.fine(sb.toString()); } log.fine("U2[]:"); for (i = 0; i < 64; i++) { sb = new StringBuilder(); for (j = 0; j < 4; j++) sb.append("0x").append(Util.toString(U2[i * 4 + j])).append(", "); log.fine(sb.toString()); } log.fine("U3[]:"); for (i = 0; i < 64; i++) { sb = new StringBuilder(); for (j = 0; j < 4; j++) sb.append("0x").append(Util.toString(U3[i * 4 + j])).append(", "); log.fine(sb.toString()); } log.fine("U4[]:"); for (i = 0; i < 64; i++) { sb = new StringBuilder(); for (j = 0; j < 4; j++) sb.append("0x").append(Util.toString(U4[i * 4 + j])).append(", "); log.fine(sb.toString()); } log.fine("rcon[]:"); for (i = 0; i < 5; i++) { sb = new StringBuilder(); for (j = 0; j < 6; j++) sb.append("0x").append(Util.toString(rcon[i * 6 + j])).append(", "); log.fine(sb.toString()); } log.fine("Total initialization time: " + time + " ms."); } } /** Trivial 0-arguments constructor. */ public Rijndael() { super(Registry.RIJNDAEL_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE); } /** * Returns the number of rounds for a given Rijndael's key and block sizes. * * @param ks the size of the user key material in bytes. * @param bs the desired block size in bytes. * @return the number of rounds for a given Rijndael's key and block sizes. */ public static int getRounds(int ks, int bs) { switch (ks) { case 16: return bs == 16 ? 10 : (bs == 24 ? 12 : 14); case 24: return bs != 32 ? 12 : 14; default: // 32 bytes = 256 bits return 14; } } private static void rijndaelEncrypt(byte[] in, int inOffset, byte[] out, int outOffset, Object sessionKey, int bs) { Object[] sKey = (Object[]) sessionKey; // extract encryption round keys int[][] Ke = (int[][]) sKey[0]; int BC = bs / 4; int ROUNDS = Ke.length - 1; int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2); int s1 = shifts[SC][1][0]; int s2 = shifts[SC][2][0]; int s3 = shifts[SC][3][0]; int[] a = new int[BC]; int[] t = new int[BC]; // temporary work array int i, tt; for (i = 0; i < BC; i++) // plaintext to ints + key t[i] = (in[inOffset++] << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ Ke[0][i]; for (int r = 1; r < ROUNDS; r++) // apply round transforms { for (i = 0; i < BC; i++) a[i] = (T1[(t[ i ] >>> 24) ] ^ T2[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ T3[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ T4[ t[(i + s3) % BC] & 0xFF]) ^ Ke[r][i]; System.arraycopy(a, 0, t, 0, BC); if (Configuration.DEBUG) log.fine("CT" + r + "=" + Util.toString(t)); } for (i = 0; i < BC; i++) // last round is special { tt = Ke[ROUNDS][i]; out[outOffset++] = (byte)(S[(t[ i ] >>> 24) ] ^ (tt >>> 24)); out[outOffset++] = (byte)(S[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16)); out[outOffset++] = (byte)(S[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8)); out[outOffset++] = (byte)(S[ t[(i + s3) % BC] & 0xFF] ^ tt ); } if (Configuration.DEBUG) log.fine("CT=" + Util.toString(out, outOffset - bs, bs)); } private static void rijndaelDecrypt(byte[] in, int inOffset, byte[] out, int outOffset, Object sessionKey, int bs) { Object[] sKey = (Object[]) sessionKey; // extract decryption round keys int[][] Kd = (int[][]) sKey[1]; int BC = bs / 4; int ROUNDS = Kd.length - 1; int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2); int s1 = shifts[SC][1][1]; int s2 = shifts[SC][2][1]; int s3 = shifts[SC][3][1]; int[] a = new int[BC]; int[] t = new int[BC]; // temporary work array int i, tt; for (i = 0; i < BC; i++) // ciphertext to ints + key t[i] = (in[inOffset++] << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ Kd[0][i]; for (int r = 1; r < ROUNDS; r++) // apply round transforms { for (i = 0; i < BC; i++) a[i] = (T5[(t[ i ] >>> 24) ] ^ T6[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ T7[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ T8[ t[(i + s3) % BC] & 0xFF]) ^ Kd[r][i]; System.arraycopy(a, 0, t, 0, BC); if (Configuration.DEBUG) log.fine("PT" + r + "=" + Util.toString(t)); } for (i = 0; i < BC; i++) // last round is special { tt = Kd[ROUNDS][i]; out[outOffset++] = (byte)(Si[(t[ i ] >>> 24) ] ^ (tt >>> 24)); out[outOffset++] = (byte)(Si[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16)); out[outOffset++] = (byte)(Si[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8)); out[outOffset++] = (byte)(Si[ t[(i + s3) % BC] & 0xFF] ^ tt ); } if (Configuration.DEBUG) log.fine("PT=" + Util.toString(out, outOffset - bs, bs)); } private static void aesEncrypt(byte[] in, int i, byte[] out, int j, Object key) { int[][] Ke = (int[][])((Object[]) key)[0]; // extract encryption round keys int ROUNDS = Ke.length - 1; int[] Ker = Ke[0]; // plaintext to ints + key int t0 = (in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Ker[0]; int t1 = (in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Ker[1]; int t2 = (in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Ker[2]; int t3 = (in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Ker[3]; int a0, a1, a2, a3; for (int r = 1; r < ROUNDS; r++) // apply round transforms { Ker = Ke[r]; a0 = (T1[(t0 >>> 24) ] ^ T2[(t1 >>> 16) & 0xFF] ^ T3[(t2 >>> 8) & 0xFF] ^ T4[ t3 & 0xFF]) ^ Ker[0]; a1 = (T1[(t1 >>> 24) ] ^ T2[(t2 >>> 16) & 0xFF] ^ T3[(t3 >>> 8) & 0xFF] ^ T4[ t0 & 0xFF]) ^ Ker[1]; a2 = (T1[(t2 >>> 24) ] ^ T2[(t3 >>> 16) & 0xFF] ^ T3[(t0 >>> 8) & 0xFF] ^ T4[ t1 & 0xFF]) ^ Ker[2]; a3 = (T1[(t3 >>> 24) ] ^ T2[(t0 >>> 16) & 0xFF] ^ T3[(t1 >>> 8) & 0xFF] ^ T4[ t2 & 0xFF]) ^ Ker[3]; t0 = a0; t1 = a1; t2 = a2; t3 = a3; if (Configuration.DEBUG) log.fine("CT" + r + "=" + Util.toString(t0) + Util.toString(t1) + Util.toString(t2) + Util.toString(t3)); } // last round is special Ker = Ke[ROUNDS]; int tt = Ker[0]; out[j++] = (byte)(S[(t0 >>> 24) ] ^ (tt >>> 24)); out[j++] = (byte)(S[(t1 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(S[(t2 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(S[ t3 & 0xFF] ^ tt ); tt = Ker[1]; out[j++] = (byte)(S[(t1 >>> 24) ] ^ (tt >>> 24)); out[j++] = (byte)(S[(t2 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(S[(t3 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(S[ t0 & 0xFF] ^ tt ); tt = Ker[2]; out[j++] = (byte)(S[(t2 >>> 24) ] ^ (tt >>> 24)); out[j++] = (byte)(S[(t3 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(S[(t0 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(S[ t1 & 0xFF] ^ tt ); tt = Ker[3]; out[j++] = (byte)(S[(t3 >>> 24) ] ^ (tt >>> 24)); out[j++] = (byte)(S[(t0 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(S[(t1 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(S[ t2 & 0xFF] ^ tt ); if (Configuration.DEBUG) log.fine("CT=" + Util.toString(out, j - 16, 16)); } private static void aesDecrypt(byte[] in, int i, byte[] out, int j, Object key) { int[][] Kd = (int[][])((Object[]) key)[1]; // extract decryption round keys int ROUNDS = Kd.length - 1; int[] Kdr = Kd[0]; // ciphertext to ints + key int t0 = (in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Kdr[0]; int t1 = (in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Kdr[1]; int t2 = (in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Kdr[2]; int t3 = (in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Kdr[3]; int a0, a1, a2, a3; for (int r = 1; r < ROUNDS; r++) // apply round transforms { Kdr = Kd[r]; a0 = (T5[(t0 >>> 24) ] ^ T6[(t3 >>> 16) & 0xFF] ^ T7[(t2 >>> 8) & 0xFF] ^ T8[ t1 & 0xFF]) ^ Kdr[0]; a1 = (T5[(t1 >>> 24) ] ^ T6[(t0 >>> 16) & 0xFF] ^ T7[(t3 >>> 8) & 0xFF] ^ T8[ t2 & 0xFF]) ^ Kdr[1]; a2 = (T5[(t2 >>> 24) ] ^ T6[(t1 >>> 16) & 0xFF] ^ T7[(t0 >>> 8) & 0xFF] ^ T8[ t3 & 0xFF]) ^ Kdr[2]; a3 = (T5[(t3 >>> 24) ] ^ T6[(t2 >>> 16) & 0xFF] ^ T7[(t1 >>> 8) & 0xFF] ^ T8[ t0 & 0xFF]) ^ Kdr[3]; t0 = a0; t1 = a1; t2 = a2; t3 = a3; if (Configuration.DEBUG) log.fine("PT" + r + "=" + Util.toString(t0) + Util.toString(t1) + Util.toString(t2) + Util.toString(t3)); } // last round is special Kdr = Kd[ROUNDS]; int tt = Kdr[0]; out[j++] = (byte)(Si[(t0 >>> 24) ] ^ (tt >>> 24)); out[j++] = (byte)(Si[(t3 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(Si[(t2 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(Si[ t1 & 0xFF] ^ tt ); tt = Kdr[1]; out[j++] = (byte)(Si[(t1 >>> 24) ] ^ (tt >>> 24)); out[j++] = (byte)(Si[(t0 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(Si[(t3 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(Si[ t2 & 0xFF] ^ tt ); tt = Kdr[2]; out[j++] = (byte)(Si[(t2 >>> 24) ] ^ (tt >>> 24)); out[j++] = (byte)(Si[(t1 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(Si[(t0 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(Si[ t3 & 0xFF] ^ tt ); tt = Kdr[3]; out[j++] = (byte)(Si[(t3 >>> 24) ] ^ (tt >>> 24)); out[j++] = (byte)(Si[(t2 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(Si[(t1 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(Si[ t0 & 0xFF] ^ tt ); if (Configuration.DEBUG) log.fine("PT=" + Util.toString(out, j - 16, 16)); } public Object clone() { Rijndael result = new Rijndael(); result.currentBlockSize = this.currentBlockSize; return result; } public Iterator blockSizes() { ArrayList al = new ArrayList(); al.add(Integer.valueOf(128 / 8)); al.add(Integer.valueOf(192 / 8)); al.add(Integer.valueOf(256 / 8)); return Collections.unmodifiableList(al).iterator(); } public Iterator keySizes() { ArrayList al = new ArrayList(); al.add(Integer.valueOf(128 / 8)); al.add(Integer.valueOf(192 / 8)); al.add(Integer.valueOf(256 / 8)); return Collections.unmodifiableList(al).iterator(); } /** * Expands a user-supplied key material into a session key for a designated * <i>block size</i>. * * @param k the 128/192/256-bit user-key to use. * @param bs the block size in bytes of this Rijndael. * @return an Object encapsulating the session key. * @exception IllegalArgumentException if the block size is not 16, 24 or 32. * @exception InvalidKeyException if the key data is invalid. */ public Object makeKey(byte[] k, int bs) throws InvalidKeyException { if (k == null) throw new InvalidKeyException("Empty key"); if (! (k.length == 16 || k.length == 24 || k.length == 32)) throw new InvalidKeyException("Incorrect key length"); if (! (bs == 16 || bs == 24 || bs == 32)) throw new IllegalArgumentException(); int ROUNDS = getRounds(k.length, bs); int BC = bs / 4; int[][] Ke = new int[ROUNDS + 1][BC]; // encryption round keys int[][] Kd = new int[ROUNDS + 1][BC]; // decryption round keys int ROUND_KEY_COUNT = (ROUNDS + 1) * BC; int KC = k.length / 4; int[] tk = new int[KC]; int i, j; // copy user material bytes into temporary ints for (i = 0, j = 0; i < KC;) tk[i++] = k[j++] << 24 | (k[j++] & 0xFF) << 16 | (k[j++] & 0xFF) << 8 | (k[j++] & 0xFF); // copy values into round key arrays int t = 0; for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) { Ke[t / BC][t % BC] = tk[j]; Kd[ROUNDS - (t / BC)][t % BC] = tk[j]; } int tt, rconpointer = 0; while (t < ROUND_KEY_COUNT) { // extrapolate using phi (the round key evolution function) tt = tk[KC - 1]; tk[0] ^= (S[(tt >>> 16) & 0xFF] & 0xFF) << 24 ^ (S[(tt >>> 8) & 0xFF] & 0xFF) << 16 ^ (S[ tt & 0xFF] & 0xFF) << 8 ^ (S[(tt >>> 24) ] & 0xFF) ^ rcon[rconpointer++] << 24; if (KC != 8) for (i = 1, j = 0; i < KC;) tk[i++] ^= tk[j++]; else { for (i = 1, j = 0; i < KC / 2;) tk[i++] ^= tk[j++]; tt = tk[KC / 2 - 1]; tk[KC / 2] ^= (S[ tt & 0xFF] & 0xFF) ^ (S[(tt >>> 8) & 0xFF] & 0xFF) << 8 ^ (S[(tt >>> 16) & 0xFF] & 0xFF) << 16 ^ S[(tt >>> 24) & 0xFF] << 24; for (j = KC / 2, i = j + 1; i < KC;) tk[i++] ^= tk[j++]; } // copy values into round key arrays for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) { Ke[t / BC][t % BC] = tk[j]; Kd[ROUNDS - (t / BC)][t % BC] = tk[j]; } } for (int r = 1; r < ROUNDS; r++) // inverse MixColumn where needed for (j = 0; j < BC; j++) { tt = Kd[r][j]; Kd[r][j] = U1[(tt >>> 24) ] ^ U2[(tt >>> 16) & 0xFF] ^ U3[(tt >>> 8) & 0xFF] ^ U4[ tt & 0xFF]; } return new Object[] { Ke, Kd }; } public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) { if (! (bs == 16 || bs == 24 || bs == 32)) throw new IllegalArgumentException(); if (bs == DEFAULT_BLOCK_SIZE) aesEncrypt(in, i, out, j, k); else rijndaelEncrypt(in, i, out, j, k, bs); } public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) { if (! (bs == 16 || bs == 24 || bs == 32)) throw new IllegalArgumentException(); if (bs == DEFAULT_BLOCK_SIZE) aesDecrypt(in, i, out, j, k); else rijndaelDecrypt(in, i, out, j, k, bs); } public boolean selfTest() { if (valid == null) { boolean result = super.selfTest(); // do symmetry tests if (result) result = testKat(KAT_KEY, KAT_CT); valid = Boolean.valueOf(result); } return valid.booleanValue(); } }