/*** * ASM: a very small and fast Java bytecode manipulation framework * Copyright (c) 2000-2005 INRIA, France Telecom * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ package org.objectweb.asm; /** * A {@link MethodVisitor} that generates methods in bytecode form. Each visit * method of this class appends the bytecode corresponding to the visited * instruction to a byte vector, in the order these methods are called. * * @author Eric Bruneton * @author Eugene Kuleshov */ class MethodWriter implements MethodVisitor { /** * Next method writer (see {@link ClassWriter#firstMethod firstMethod}). */ MethodWriter next; /** * The class writer to which this method must be added. */ ClassWriter cw; /** * Access flags of this method. */ private int access; /** * The index of the constant pool item that contains the name of this * method. */ private int name; /** * The index of the constant pool item that contains the descriptor of this * method. */ private int desc; /** * The descriptor of this method. */ private String descriptor; /** * If not zero, indicates that the code of this method must be copied from * the ClassReader associated to this writer in <code>cw.cr</code>. More * precisely, this field gives the index of the first byte to copied from * <code>cw.cr.b</code>. */ int classReaderOffset; /** * If not zero, indicates that the code of this method must be copied from * the ClassReader associated to this writer in <code>cw.cr</code>. More * precisely, this field gives the number of bytes to copied from * <code>cw.cr.b</code>. */ int classReaderLength; /** * The signature of this method. */ String signature; /** * Number of exceptions that can be thrown by this method. */ int exceptionCount; /** * The exceptions that can be thrown by this method. More precisely, this * array contains the indexes of the constant pool items that contain the * internal names of these exception classes. */ int[] exceptions; /** * The annotation default attribute of this method. May be <tt>null</tt>. */ private ByteVector annd; /** * The runtime visible annotations of this method. May be <tt>null</tt>. */ private AnnotationWriter anns; /** * The runtime invisible annotations of this method. May be <tt>null</tt>. */ private AnnotationWriter ianns; /** * The runtime visible parameter annotations of this method. May be * <tt>null</tt>. */ private AnnotationWriter[] panns; /** * The runtime invisible parameter annotations of this method. May be * <tt>null</tt>. */ private AnnotationWriter[] ipanns; /** * The non standard attributes of the method. */ private Attribute attrs; /** * The bytecode of this method. */ private ByteVector code = new ByteVector(); /** * Maximum stack size of this method. */ private int maxStack; /** * Maximum number of local variables for this method. */ private int maxLocals; /** * Number of entries in the catch table of this method. */ private int catchCount; /** * The catch table of this method. */ private Handler catchTable; /** * The last element in the catchTable handler list. */ private Handler lastHandler; /** * Number of entries in the LocalVariableTable attribute. */ private int localVarCount; /** * The LocalVariableTable attribute. */ private ByteVector localVar; /** * Number of entries in the LocalVariableTypeTable attribute. */ private int localVarTypeCount; /** * The LocalVariableTypeTable attribute. */ private ByteVector localVarType; /** * Number of entries in the LineNumberTable attribute. */ private int lineNumberCount; /** * The LineNumberTable attribute. */ private ByteVector lineNumber; /** * The non standard attributes of the method's code. */ private Attribute cattrs; /** * Indicates if some jump instructions are too small and need to be resized. */ private boolean resize; /* * Fields for the control flow graph analysis algorithm (used to compute the * maximum stack size). A control flow graph contains one node per "basic * block", and one edge per "jump" from one basic block to another. Each * node (i.e., each basic block) is represented by the Label object that * corresponds to the first instruction of this basic block. Each node also * stores the list of its successors in the graph, as a linked list of Edge * objects. */ /** * <tt>true</tt> if the maximum stack size and number of local variables * must be automatically computed. */ private final boolean computeMaxs; /** * The (relative) stack size after the last visited instruction. This size * is relative to the beginning of the current basic block, i.e., the true * stack size after the last visited instruction is equal to the {@link * Label#beginStackSize beginStackSize} of the current basic block plus * <tt>stackSize</tt>. */ private int stackSize; /** * The (relative) maximum stack size after the last visited instruction. * This size is relative to the beginning of the current basic block, i.e., * the true maximum stack size after the last visited instruction is equal * to the {@link Label#beginStackSize beginStackSize} of the current basic * block plus <tt>stackSize</tt>. */ private int maxStackSize; /** * The current basic block. This block is the basic block to which the next * instruction to be visited must be added. */ private Label currentBlock; /** * The basic block stack used by the control flow analysis algorithm. This * stack is represented by a linked list of {@link Label Label} objects, * linked to each other by their {@link Label#next} field. This stack must * not be confused with the JVM stack used to execute the JVM instructions! */ private Label blockStack; /** * The stack size variation corresponding to each JVM instruction. This * stack variation is equal to the size of the values produced by an * instruction, minus the size of the values consumed by this instruction. */ private final static int[] SIZE; // ------------------------------------------------------------------------ // Static initializer // ------------------------------------------------------------------------ /** * Computes the stack size variation corresponding to each JVM instruction. */ static { int i; int[] b = new int[202]; String s = "EFFFFFFFFGGFFFGGFFFEEFGFGFEEEEEEEEEEEEEEEEEEEEDEDEDDDDD" + "CDCDEEEEEEEEEEEEEEEEEEEEBABABBBBDCFFFGGGEDCDCDCDCDCDCDCDCD" + "CDCEEEEDDDDDDDCDCDCEFEFDDEEFFDEDEEEBDDBBDDDDDDCCCCCCCCEFED" + "DDCDCDEEEEEEEEEEFEEEEEEDDEEDDEE"; for (i = 0; i < b.length; ++i) { b[i] = s.charAt(i) - 'E'; } SIZE = b; // code to generate the above string // // int NA = 0; // not applicable (unused opcode or variable size opcode) // // b = new int[] { // 0, //NOP, // visitInsn // 1, //ACONST_NULL, // - // 1, //ICONST_M1, // - // 1, //ICONST_0, // - // 1, //ICONST_1, // - // 1, //ICONST_2, // - // 1, //ICONST_3, // - // 1, //ICONST_4, // - // 1, //ICONST_5, // - // 2, //LCONST_0, // - // 2, //LCONST_1, // - // 1, //FCONST_0, // - // 1, //FCONST_1, // - // 1, //FCONST_2, // - // 2, //DCONST_0, // - // 2, //DCONST_1, // - // 1, //BIPUSH, // visitIntInsn // 1, //SIPUSH, // - // 1, //LDC, // visitLdcInsn // NA, //LDC_W, // - // NA, //LDC2_W, // - // 1, //ILOAD, // visitVarInsn // 2, //LLOAD, // - // 1, //FLOAD, // - // 2, //DLOAD, // - // 1, //ALOAD, // - // NA, //ILOAD_0, // - // NA, //ILOAD_1, // - // NA, //ILOAD_2, // - // NA, //ILOAD_3, // - // NA, //LLOAD_0, // - // NA, //LLOAD_1, // - // NA, //LLOAD_2, // - // NA, //LLOAD_3, // - // NA, //FLOAD_0, // - // NA, //FLOAD_1, // - // NA, //FLOAD_2, // - // NA, //FLOAD_3, // - // NA, //DLOAD_0, // - // NA, //DLOAD_1, // - // NA, //DLOAD_2, // - // NA, //DLOAD_3, // - // NA, //ALOAD_0, // - // NA, //ALOAD_1, // - // NA, //ALOAD_2, // - // NA, //ALOAD_3, // - // -1, //IALOAD, // visitInsn // 0, //LALOAD, // - // -1, //FALOAD, // - // 0, //DALOAD, // - // -1, //AALOAD, // - // -1, //BALOAD, // - // -1, //CALOAD, // - // -1, //SALOAD, // - // -1, //ISTORE, // visitVarInsn // -2, //LSTORE, // - // -1, //FSTORE, // - // -2, //DSTORE, // - // -1, //ASTORE, // - // NA, //ISTORE_0, // - // NA, //ISTORE_1, // - // NA, //ISTORE_2, // - // NA, //ISTORE_3, // - // NA, //LSTORE_0, // - // NA, //LSTORE_1, // - // NA, //LSTORE_2, // - // NA, //LSTORE_3, // - // NA, //FSTORE_0, // - // NA, //FSTORE_1, // - // NA, //FSTORE_2, // - // NA, //FSTORE_3, // - // NA, //DSTORE_0, // - // NA, //DSTORE_1, // - // NA, //DSTORE_2, // - // NA, //DSTORE_3, // - // NA, //ASTORE_0, // - // NA, //ASTORE_1, // - // NA, //ASTORE_2, // - // NA, //ASTORE_3, // - // -3, //IASTORE, // visitInsn // -4, //LASTORE, // - // -3, //FASTORE, // - // -4, //DASTORE, // - // -3, //AASTORE, // - // -3, //BASTORE, // - // -3, //CASTORE, // - // -3, //SASTORE, // - // -1, //POP, // - // -2, //POP2, // - // 1, //DUP, // - // 1, //DUP_X1, // - // 1, //DUP_X2, // - // 2, //DUP2, // - // 2, //DUP2_X1, // - // 2, //DUP2_X2, // - // 0, //SWAP, // - // -1, //IADD, // - // -2, //LADD, // - // -1, //FADD, // - // -2, //DADD, // - // -1, //ISUB, // - // -2, //LSUB, // - // -1, //FSUB, // - // -2, //DSUB, // - // -1, //IMUL, // - // -2, //LMUL, // - // -1, //FMUL, // - // -2, //DMUL, // - // -1, //IDIV, // - // -2, //LDIV, // - // -1, //FDIV, // - // -2, //DDIV, // - // -1, //IREM, // - // -2, //LREM, // - // -1, //FREM, // - // -2, //DREM, // - // 0, //INEG, // - // 0, //LNEG, // - // 0, //FNEG, // - // 0, //DNEG, // - // -1, //ISHL, // - // -1, //LSHL, // - // -1, //ISHR, // - // -1, //LSHR, // - // -1, //IUSHR, // - // -1, //LUSHR, // - // -1, //IAND, // - // -2, //LAND, // - // -1, //IOR, // - // -2, //LOR, // - // -1, //IXOR, // - // -2, //LXOR, // - // 0, //IINC, // visitIincInsn // 1, //I2L, // visitInsn // 0, //I2F, // - // 1, //I2D, // - // -1, //L2I, // - // -1, //L2F, // - // 0, //L2D, // - // 0, //F2I, // - // 1, //F2L, // - // 1, //F2D, // - // -1, //D2I, // - // 0, //D2L, // - // -1, //D2F, // - // 0, //I2B, // - // 0, //I2C, // - // 0, //I2S, // - // -3, //LCMP, // - // -1, //FCMPL, // - // -1, //FCMPG, // - // -3, //DCMPL, // - // -3, //DCMPG, // - // -1, //IFEQ, // visitJumpInsn // -1, //IFNE, // - // -1, //IFLT, // - // -1, //IFGE, // - // -1, //IFGT, // - // -1, //IFLE, // - // -2, //IF_ICMPEQ, // - // -2, //IF_ICMPNE, // - // -2, //IF_ICMPLT, // - // -2, //IF_ICMPGE, // - // -2, //IF_ICMPGT, // - // -2, //IF_ICMPLE, // - // -2, //IF_ACMPEQ, // - // -2, //IF_ACMPNE, // - // 0, //GOTO, // - // 1, //JSR, // - // 0, //RET, // visitVarInsn // -1, //TABLESWITCH, // visiTableSwitchInsn // -1, //LOOKUPSWITCH, // visitLookupSwitch // -1, //IRETURN, // visitInsn // -2, //LRETURN, // - // -1, //FRETURN, // - // -2, //DRETURN, // - // -1, //ARETURN, // - // 0, //RETURN, // - // NA, //GETSTATIC, // visitFieldInsn // NA, //PUTSTATIC, // - // NA, //GETFIELD, // - // NA, //PUTFIELD, // - // NA, //INVOKEVIRTUAL, // visitMethodInsn // NA, //INVOKESPECIAL, // - // NA, //INVOKESTATIC, // - // NA, //INVOKEINTERFACE, // - // NA, //UNUSED, // NOT VISITED // 1, //NEW, // visitTypeInsn // 0, //NEWARRAY, // visitIntInsn // 0, //ANEWARRAY, // visitTypeInsn // 0, //ARRAYLENGTH, // visitInsn // NA, //ATHROW, // - // 0, //CHECKCAST, // visitTypeInsn // 0, //INSTANCEOF, // - // -1, //MONITORENTER, // visitInsn // -1, //MONITOREXIT, // - // NA, //WIDE, // NOT VISITED // NA, //MULTIANEWARRAY, // visitMultiANewArrayInsn // -1, //IFNULL, // visitJumpInsn // -1, //IFNONNULL, // - // NA, //GOTO_W, // - // NA, //JSR_W, // - // }; // for (i = 0; i < b.length; ++i) { // System.err.print((char)('E' + b[i])); // } // System.err.println(); } // ------------------------------------------------------------------------ // Constructor // ------------------------------------------------------------------------ /** * Constructs a new {@link MethodWriter}. * * @param cw the class writer in which the method must be added. * @param access the method's access flags (see {@link Opcodes}). * @param name the method's name. * @param desc the method's descriptor (see {@link Type}). * @param signature the method's signature. May be <tt>null</tt>. * @param exceptions the internal names of the method's exceptions. May be * <tt>null</tt>. * @param computeMaxs <tt>true</tt> if the maximum stack size and number * of local variables must be automatically computed. */ MethodWriter( final ClassWriter cw, final int access, final String name, final String desc, final String signature, final String[] exceptions, final boolean computeMaxs) { if (cw.firstMethod == null) { cw.firstMethod = this; } else { cw.lastMethod.next = this; } cw.lastMethod = this; this.cw = cw; this.access = access; this.name = cw.newUTF8(name); this.desc = cw.newUTF8(desc); this.descriptor = desc; this.signature = signature; if (exceptions != null && exceptions.length > 0) { exceptionCount = exceptions.length; this.exceptions = new int[exceptionCount]; for (int i = 0; i < exceptionCount; ++i) { this.exceptions[i] = cw.newClass(exceptions[i]); } } this.computeMaxs = computeMaxs; if (computeMaxs) { // updates maxLocals int size = getArgumentsAndReturnSizes(desc) >> 2; if ((access & Opcodes.ACC_STATIC) != 0) { --size; } maxLocals = size; // pushes the first block onto the stack of blocks to be visited currentBlock = new Label(); currentBlock.pushed = true; blockStack = currentBlock; } } // ------------------------------------------------------------------------ // Implementation of the MethodVisitor interface // ------------------------------------------------------------------------ public AnnotationVisitor visitAnnotationDefault() { annd = new ByteVector(); return new AnnotationWriter(cw, false, annd, null, 0); } public AnnotationVisitor visitAnnotation( final String desc, final boolean visible) { ByteVector bv = new ByteVector(); // write type, and reserve space for values count bv.putShort(cw.newUTF8(desc)).putShort(0); AnnotationWriter aw = new AnnotationWriter(cw, true, bv, bv, 2); if (visible) { aw.next = anns; anns = aw; } else { aw.next = ianns; ianns = aw; } return aw; } public AnnotationVisitor visitParameterAnnotation( final int parameter, final String desc, final boolean visible) { ByteVector bv = new ByteVector(); // write type, and reserve space for values count bv.putShort(cw.newUTF8(desc)).putShort(0); AnnotationWriter aw = new AnnotationWriter(cw, true, bv, bv, 2); if (visible) { if (panns == null) { panns = new AnnotationWriter[Type.getArgumentTypes(descriptor).length]; } aw.next = panns[parameter]; panns[parameter] = aw; } else { if (ipanns == null) { ipanns = new AnnotationWriter[Type.getArgumentTypes(descriptor).length]; } aw.next = ipanns[parameter]; ipanns[parameter] = aw; } return aw; } public void visitAttribute(final Attribute attr) { if (attr.isCodeAttribute()) { attr.next = cattrs; cattrs = attr; } else { attr.next = attrs; attrs = attr; } } public void visitCode() { } public void visitInsn(final int opcode) { if (computeMaxs) { // updates current and max stack sizes int size = stackSize + SIZE[opcode]; if (size > maxStackSize) { maxStackSize = size; } stackSize = size; // if opcode == ATHROW or xRETURN, ends current block (no successor) if ((opcode >= Opcodes.IRETURN && opcode <= Opcodes.RETURN) || opcode == Opcodes.ATHROW) { if (currentBlock != null) { currentBlock.maxStackSize = maxStackSize; currentBlock = null; } } } // adds the instruction to the bytecode of the method code.putByte(opcode); } public void visitIntInsn(final int opcode, final int operand) { if (computeMaxs && opcode != Opcodes.NEWARRAY) { // updates current and max stack sizes only if opcode == NEWARRAY // (stack size variation = 0 for BIPUSH or SIPUSH) int size = stackSize + 1; if (size > maxStackSize) { maxStackSize = size; } stackSize = size; } // adds the instruction to the bytecode of the method if (opcode == Opcodes.SIPUSH) { code.put12(opcode, operand); } else { // BIPUSH or NEWARRAY code.put11(opcode, operand); } } public void visitVarInsn(final int opcode, final int var) { if (computeMaxs) { // updates current and max stack sizes if (opcode == Opcodes.RET) { // no stack change, but end of current block (no successor) if (currentBlock != null) { currentBlock.maxStackSize = maxStackSize; currentBlock = null; } } else { // xLOAD or xSTORE int size = stackSize + SIZE[opcode]; if (size > maxStackSize) { maxStackSize = size; } stackSize = size; } // updates max locals int n; if (opcode == Opcodes.LLOAD || opcode == Opcodes.DLOAD || opcode == Opcodes.LSTORE || opcode == Opcodes.DSTORE) { n = var + 2; } else { n = var + 1; } if (n > maxLocals) { maxLocals = n; } } // adds the instruction to the bytecode of the method if (var < 4 && opcode != Opcodes.RET) { int opt; if (opcode < Opcodes.ISTORE) { /* ILOAD_0 */ opt = 26 + ((opcode - Opcodes.ILOAD) << 2) + var; } else { /* ISTORE_0 */ opt = 59 + ((opcode - Opcodes.ISTORE) << 2) + var; } code.putByte(opt); } else if (var >= 256) { code.putByte(196 /* WIDE */).put12(opcode, var); } else { code.put11(opcode, var); } } public void visitTypeInsn(final int opcode, final String desc) { if (computeMaxs && opcode == Opcodes.NEW) { // updates current and max stack sizes only if opcode == NEW // (stack size variation = 0 for ANEWARRAY, CHECKCAST, INSTANCEOF) int size = stackSize + 1; if (size > maxStackSize) { maxStackSize = size; } stackSize = size; } // adds the instruction to the bytecode of the method code.put12(opcode, cw.newClass(desc)); } public void visitFieldInsn( final int opcode, final String owner, final String name, final String desc) { if (computeMaxs) { int size; // computes the stack size variation char c = desc.charAt(0); switch (opcode) { case Opcodes.GETSTATIC: size = stackSize + (c == 'D' || c == 'J' ? 2 : 1); break; case Opcodes.PUTSTATIC: size = stackSize + (c == 'D' || c == 'J' ? -2 : -1); break; case Opcodes.GETFIELD: size = stackSize + (c == 'D' || c == 'J' ? 1 : 0); break; // case Constants.PUTFIELD: default: size = stackSize + (c == 'D' || c == 'J' ? -3 : -2); break; } // updates current and max stack sizes if (size > maxStackSize) { maxStackSize = size; } stackSize = size; } // adds the instruction to the bytecode of the method code.put12(opcode, cw.newField(owner, name, desc)); } public void visitMethodInsn( final int opcode, final String owner, final String name, final String desc) { boolean itf = opcode == Opcodes.INVOKEINTERFACE; Item i = cw.newMethodItem(owner, name, desc, itf); int argSize = i.intVal; if (computeMaxs) { /* * computes the stack size variation. In order not to recompute * several times this variation for the same Item, we use the intVal * field of this item to store this variation, once it has been * computed. More precisely this intVal field stores the sizes of * the arguments and of the return value corresponding to desc. */ if (argSize == 0) { // the above sizes have not been computed yet, so we compute // them... argSize = getArgumentsAndReturnSizes(desc); // ... and we save them in order not to recompute them in the // future i.intVal = argSize; } int size; if (opcode == Opcodes.INVOKESTATIC) { size = stackSize - (argSize >> 2) + (argSize & 0x03) + 1; } else { size = stackSize - (argSize >> 2) + (argSize & 0x03); } // updates current and max stack sizes if (size > maxStackSize) { maxStackSize = size; } stackSize = size; } // adds the instruction to the bytecode of the method if (itf) { if (!computeMaxs) { if (argSize == 0) { argSize = getArgumentsAndReturnSizes(desc); i.intVal = argSize; } } code.put12(Opcodes.INVOKEINTERFACE, i.index).put11(argSize >> 2, 0); } else { code.put12(opcode, i.index); } } public void visitJumpInsn(final int opcode, final Label label) { if (computeMaxs) { if (opcode == Opcodes.GOTO) { // no stack change, but end of current block (with one new // successor) if (currentBlock != null) { currentBlock.maxStackSize = maxStackSize; addSuccessor(stackSize, label); currentBlock = null; } } else if (opcode == Opcodes.JSR) { if (currentBlock != null) { addSuccessor(stackSize + 1, label); } } else { // updates current stack size (max stack size unchanged because // stack size variation always negative in this case) stackSize += SIZE[opcode]; if (currentBlock != null) { addSuccessor(stackSize, label); } } } // adds the instruction to the bytecode of the method if (label.resolved && label.position - code.length < Short.MIN_VALUE) { /* * case of a backward jump with an offset < -32768. In this case we * automatically replace GOTO with GOTO_W, JSR with JSR_W and IFxxx * <l> with IFNOTxxx <l'> GOTO_W <l>, where IFNOTxxx is the * "opposite" opcode of IFxxx (i.e., IFNE for IFEQ) and where <l'> * designates the instruction just after the GOTO_W. */ if (opcode == Opcodes.GOTO) { code.putByte(200); // GOTO_W } else if (opcode == Opcodes.JSR) { code.putByte(201); // JSR_W } else { code.putByte(opcode <= 166 ? ((opcode + 1) ^ 1) - 1 : opcode ^ 1); code.putShort(8); // jump offset code.putByte(200); // GOTO_W } label.put(this, code, code.length - 1, true); } else { /* * case of a backward jump with an offset >= -32768, or of a forward * jump with, of course, an unknown offset. In these cases we store * the offset in 2 bytes (which will be increased in * resizeInstructions, if needed). */ code.putByte(opcode); label.put(this, code, code.length - 1, false); } } public void visitLabel(final Label label) { if (computeMaxs) { if (currentBlock != null) { // ends current block (with one new successor) currentBlock.maxStackSize = maxStackSize; addSuccessor(stackSize, label); } // begins a new current block, // resets the relative current and max stack sizes currentBlock = label; stackSize = 0; maxStackSize = 0; } // resolves previous forward references to label, if any resize |= label.resolve(this, code.length, code.data); } public void visitLdcInsn(final Object cst) { Item i = cw.newConstItem(cst); if (computeMaxs) { int size; // computes the stack size variation if (i.type == ClassWriter.LONG || i.type == ClassWriter.DOUBLE) { size = stackSize + 2; } else { size = stackSize + 1; } // updates current and max stack sizes if (size > maxStackSize) { maxStackSize = size; } stackSize = size; } // adds the instruction to the bytecode of the method int index = i.index; if (i.type == ClassWriter.LONG || i.type == ClassWriter.DOUBLE) { code.put12(20 /* LDC2_W */, index); } else if (index >= 256) { code.put12(19 /* LDC_W */, index); } else { code.put11(Opcodes.LDC, index); } } public void visitIincInsn(final int var, final int increment) { if (computeMaxs) { // updates max locals only (no stack change) int n = var + 1; if (n > maxLocals) { maxLocals = n; } } // adds the instruction to the bytecode of the method if ((var > 255) || (increment > 127) || (increment < -128)) { code.putByte(196 /* WIDE */) .put12(Opcodes.IINC, var) .putShort(increment); } else { code.putByte(Opcodes.IINC).put11(var, increment); } } public void visitTableSwitchInsn( final int min, final int max, final Label dflt, final Label labels[]) { if (computeMaxs) { // updates current stack size (max stack size unchanged) --stackSize; // ends current block (with many new successors) if (currentBlock != null) { currentBlock.maxStackSize = maxStackSize; addSuccessor(stackSize, dflt); for (int i = 0; i < labels.length; ++i) { addSuccessor(stackSize, labels[i]); } currentBlock = null; } } // adds the instruction to the bytecode of the method int source = code.length; code.putByte(Opcodes.TABLESWITCH); while (code.length % 4 != 0) { code.putByte(0); } dflt.put(this, code, source, true); code.putInt(min).putInt(max); for (int i = 0; i < labels.length; ++i) { labels[i].put(this, code, source, true); } } public void visitLookupSwitchInsn( final Label dflt, final int keys[], final Label labels[]) { if (computeMaxs) { // updates current stack size (max stack size unchanged) --stackSize; // ends current block (with many new successors) if (currentBlock != null) { currentBlock.maxStackSize = maxStackSize; addSuccessor(stackSize, dflt); for (int i = 0; i < labels.length; ++i) { addSuccessor(stackSize, labels[i]); } currentBlock = null; } } // adds the instruction to the bytecode of the method int source = code.length; code.putByte(Opcodes.LOOKUPSWITCH); while (code.length % 4 != 0) { code.putByte(0); } dflt.put(this, code, source, true); code.putInt(labels.length); for (int i = 0; i < labels.length; ++i) { code.putInt(keys[i]); labels[i].put(this, code, source, true); } } public void visitMultiANewArrayInsn(final String desc, final int dims) { if (computeMaxs) { // updates current stack size (max stack size unchanged because // stack size variation always negative or null) stackSize += 1 - dims; } // adds the instruction to the bytecode of the method code.put12(Opcodes.MULTIANEWARRAY, cw.newClass(desc)).putByte(dims); } public void visitTryCatchBlock( final Label start, final Label end, final Label handler, final String type) { if (computeMaxs) { // pushes handler block onto the stack of blocks to be visited if (!handler.pushed) { handler.beginStackSize = 1; handler.pushed = true; handler.next = blockStack; blockStack = handler; } } ++catchCount; Handler h = new Handler(); h.start = start; h.end = end; h.handler = handler; h.desc = type; h.type = type != null ? cw.newClass(type) : 0; if (lastHandler == null) { catchTable = h; } else { lastHandler.next = h; } lastHandler = h; } public void visitLocalVariable( final String name, final String desc, final String signature, final Label start, final Label end, final int index) { if (signature != null) { if (localVarType == null) { localVarType = new ByteVector(); } ++localVarTypeCount; localVarType.putShort(start.position) .putShort(end.position - start.position) .putShort(cw.newUTF8(name)) .putShort(cw.newUTF8(signature)) .putShort(index); } if (localVar == null) { localVar = new ByteVector(); } ++localVarCount; localVar.putShort(start.position) .putShort(end.position - start.position) .putShort(cw.newUTF8(name)) .putShort(cw.newUTF8(desc)) .putShort(index); if(computeMaxs) { // updates max locals char c = desc.charAt(0); int n = index + ( c=='L' || c=='D' ? 2 : 1); if (n > maxLocals) { maxLocals = n; } } } public void visitLineNumber(final int line, final Label start) { if (lineNumber == null) { lineNumber = new ByteVector(); } ++lineNumberCount; lineNumber.putShort(start.position); lineNumber.putShort(line); } public void visitMaxs(final int maxStack, final int maxLocals) { if (computeMaxs) { // true (non relative) max stack size int max = 0; /* * control flow analysis algorithm: while the block stack is not * empty, pop a block from this stack, update the max stack size, * compute the true (non relative) begin stack size of the * successors of this block, and push these successors onto the * stack (unless they have already been pushed onto the stack). * Note: by hypothesis, the {@link Label#beginStackSize} of the * blocks in the block stack are the true (non relative) beginning * stack sizes of these blocks. */ Label stack = blockStack; while (stack != null) { // pops a block from the stack Label l = stack; stack = stack.next; // computes the true (non relative) max stack size of this block int start = l.beginStackSize; int blockMax = start + l.maxStackSize; // updates the global max stack size if (blockMax > max) { max = blockMax; } // analyses the successors of the block Edge b = l.successors; while (b != null) { l = b.successor; // if this successor has not already been pushed onto the // stack... if (!l.pushed) { // computes the true beginning stack size of this // successor block l.beginStackSize = start + b.stackSize; // pushes this successor onto the stack l.pushed = true; l.next = stack; stack = l; } b = b.next; } } this.maxStack = max; } else { this.maxStack = maxStack; this.maxLocals = maxLocals; } } public void visitEnd() { } // ------------------------------------------------------------------------ // Utility methods: control flow analysis algorithm // ------------------------------------------------------------------------ /** * Computes the size of the arguments and of the return value of a method. * * @param desc the descriptor of a method. * @return the size of the arguments of the method (plus one for the * implicit this argument), argSize, and the size of its return * value, retSize, packed into a single int i = * <tt>(argSize << 2) | retSize</tt> (argSize is therefore equal * to <tt>i >> 2</tt>, and retSize to <tt>i & 0x03</tt>). */ private static int getArgumentsAndReturnSizes(final String desc) { int n = 1; int c = 1; while (true) { char car = desc.charAt(c++); if (car == ')') { car = desc.charAt(c); return n << 2 | (car == 'V' ? 0 : (car == 'D' || car == 'J' ? 2 : 1)); } else if (car == 'L') { while (desc.charAt(c++) != ';') { } n += 1; } else if (car == '[') { while ((car = desc.charAt(c)) == '[') { ++c; } if (car == 'D' || car == 'J') { n -= 1; } } else if (car == 'D' || car == 'J') { n += 2; } else { n += 1; } } } /** * Adds a successor to the {@link #currentBlock currentBlock} block. * * @param stackSize the current (relative) stack size in the current block. * @param successor the successor block to be added to the current block. */ private void addSuccessor(final int stackSize, final Label successor) { Edge b = new Edge(); // initializes the previous Edge object... b.stackSize = stackSize; b.successor = successor; // ...and adds it to the successor list of the currentBlock block b.next = currentBlock.successors; currentBlock.successors = b; } // ------------------------------------------------------------------------ // Utility methods: dump bytecode array // ------------------------------------------------------------------------ /** * Returns the size of the bytecode of this method. * * @return the size of the bytecode of this method. */ final int getSize() { if (classReaderOffset != 0) { return 6 + classReaderLength; } if (resize) { // replaces the temporary jump opcodes introduced by Label.resolve. resizeInstructions(new int[0], new int[0], 0); } int size = 8; if (code.length > 0) { cw.newUTF8("Code"); size += 18 + code.length + 8 * catchCount; if (localVar != null) { cw.newUTF8("LocalVariableTable"); size += 8 + localVar.length; } if (localVarType != null) { cw.newUTF8("LocalVariableTypeTable"); size += 8 + localVarType.length; } if (lineNumber != null) { cw.newUTF8("LineNumberTable"); size += 8 + lineNumber.length; } if (cattrs != null) { size += cattrs.getSize(cw, code.data, code.length, maxStack, maxLocals); } } if (exceptionCount > 0) { cw.newUTF8("Exceptions"); size += 8 + 2 * exceptionCount; } if ((access & Opcodes.ACC_SYNTHETIC) != 0 && (cw.version & 0xffff) < Opcodes.V1_5) { cw.newUTF8("Synthetic"); size += 6; } if ((access & Opcodes.ACC_DEPRECATED) != 0) { cw.newUTF8("Deprecated"); size += 6; } if (cw.version == Opcodes.V1_4) { if ((access & Opcodes.ACC_VARARGS) != 0) { cw.newUTF8("Varargs"); size += 6; } if ((access & Opcodes.ACC_BRIDGE) != 0) { cw.newUTF8("Bridge"); size += 6; } } if (signature != null) { cw.newUTF8("Signature"); cw.newUTF8(signature); size += 8; } if (annd != null) { cw.newUTF8("AnnotationDefault"); size += 6 + annd.length; } if (anns != null) { cw.newUTF8("RuntimeVisibleAnnotations"); size += 8 + anns.getSize(); } if (ianns != null) { cw.newUTF8("RuntimeInvisibleAnnotations"); size += 8 + ianns.getSize(); } if (panns != null) { cw.newUTF8("RuntimeVisibleParameterAnnotations"); size += 7 + 2 * panns.length; for (int i = panns.length - 1; i >= 0; --i) { size += panns[i] == null ? 0 : panns[i].getSize(); } } if (ipanns != null) { cw.newUTF8("RuntimeInvisibleParameterAnnotations"); size += 7 + 2 * ipanns.length; for (int i = ipanns.length - 1; i >= 0; --i) { size += ipanns[i] == null ? 0 : ipanns[i].getSize(); } } if (attrs != null) { size += attrs.getSize(cw, null, 0, -1, -1); } return size; } /** * Puts the bytecode of this method in the given byte vector. * * @param out the byte vector into which the bytecode of this method must be * copied. */ final void put(final ByteVector out) { out.putShort(access).putShort(name).putShort(desc); if (classReaderOffset != 0) { out.putByteArray(cw.cr.b, classReaderOffset, classReaderLength); return; } int attributeCount = 0; if (code.length > 0) { ++attributeCount; } if (exceptionCount > 0) { ++attributeCount; } if ((access & Opcodes.ACC_SYNTHETIC) != 0 && (cw.version & 0xffff) < Opcodes.V1_5) { ++attributeCount; } if ((access & Opcodes.ACC_DEPRECATED) != 0) { ++attributeCount; } if (cw.version == Opcodes.V1_4) { if ((access & Opcodes.ACC_VARARGS) != 0) { ++attributeCount; } if ((access & Opcodes.ACC_BRIDGE) != 0) { ++attributeCount; } } if (signature != null) { ++attributeCount; } if (annd != null) { ++attributeCount; } if (anns != null) { ++attributeCount; } if (ianns != null) { ++attributeCount; } if (panns != null) { ++attributeCount; } if (ipanns != null) { ++attributeCount; } if (attrs != null) { attributeCount += attrs.getCount(); } out.putShort(attributeCount); if (code.length > 0) { int size = 12 + code.length + 8 * catchCount; if (localVar != null) { size += 8 + localVar.length; } if (localVarType != null) { size += 8 + localVarType.length; } if (lineNumber != null) { size += 8 + lineNumber.length; } if (cattrs != null) { size += cattrs.getSize(cw, code.data, code.length, maxStack, maxLocals); } out.putShort(cw.newUTF8("Code")).putInt(size); out.putShort(maxStack).putShort(maxLocals); out.putInt(code.length).putByteArray(code.data, 0, code.length); out.putShort(catchCount); if (catchCount > 0) { Handler h = catchTable; while (h != null) { out.putShort(h.start.position) .putShort(h.end.position) .putShort(h.handler.position) .putShort(h.type); h = h.next; } } attributeCount = 0; if (localVar != null) { ++attributeCount; } if (localVarType != null) { ++attributeCount; } if (lineNumber != null) { ++attributeCount; } if (cattrs != null) { attributeCount += cattrs.getCount(); } out.putShort(attributeCount); if (localVar != null) { out.putShort(cw.newUTF8("LocalVariableTable")); out.putInt(localVar.length + 2).putShort(localVarCount); out.putByteArray(localVar.data, 0, localVar.length); } if (localVarType != null) { out.putShort(cw.newUTF8("LocalVariableTypeTable")); out.putInt(localVarType.length + 2).putShort(localVarTypeCount); out.putByteArray(localVarType.data, 0, localVarType.length); } if (lineNumber != null) { out.putShort(cw.newUTF8("LineNumberTable")); out.putInt(lineNumber.length + 2).putShort(lineNumberCount); out.putByteArray(lineNumber.data, 0, lineNumber.length); } if (cattrs != null) { cattrs.put(cw, code.data, code.length, maxLocals, maxStack, out); } } if (exceptionCount > 0) { out.putShort(cw.newUTF8("Exceptions")) .putInt(2 * exceptionCount + 2); out.putShort(exceptionCount); for (int i = 0; i < exceptionCount; ++i) { out.putShort(exceptions[i]); } } if ((access & Opcodes.ACC_SYNTHETIC) != 0 && (cw.version & 0xffff) < Opcodes.V1_5) { out.putShort(cw.newUTF8("Synthetic")).putInt(0); } if ((access & Opcodes.ACC_DEPRECATED) != 0) { out.putShort(cw.newUTF8("Deprecated")).putInt(0); } if (cw.version == Opcodes.V1_4) { if ((access & Opcodes.ACC_VARARGS) != 0) { out.putShort(cw.newUTF8("Varargs")).putInt(0); } if ((access & Opcodes.ACC_BRIDGE) != 0) { out.putShort(cw.newUTF8("Bridge")).putInt(0); } } if (signature != null) { out.putShort(cw.newUTF8("Signature")) .putInt(2) .putShort(cw.newUTF8(signature)); } if (annd != null) { out.putShort(cw.newUTF8("AnnotationDefault")); out.putInt(annd.length); out.putByteArray(annd.data, 0, annd.length); } if (anns != null) { out.putShort(cw.newUTF8("RuntimeVisibleAnnotations")); anns.put(out); } if (ianns != null) { out.putShort(cw.newUTF8("RuntimeInvisibleAnnotations")); ianns.put(out); } if (panns != null) { out.putShort(cw.newUTF8("RuntimeVisibleParameterAnnotations")); AnnotationWriter.put(panns, out); } if (ipanns != null) { out.putShort(cw.newUTF8("RuntimeInvisibleParameterAnnotations")); AnnotationWriter.put(ipanns, out); } if (attrs != null) { attrs.put(cw, null, 0, -1, -1, out); } } // ------------------------------------------------------------------------ // Utility methods: instruction resizing (used to handle GOTO_W and JSR_W) // ------------------------------------------------------------------------ /** * Resizes the designated instructions, while keeping jump offsets and * instruction addresses consistent. This may require to resize other * existing instructions, or even to introduce new instructions: for * example, increasing the size of an instruction by 2 at the middle of a * method can increases the offset of an IFEQ instruction from 32766 to * 32768, in which case IFEQ 32766 must be replaced with IFNEQ 8 GOTO_W * 32765. This, in turn, may require to increase the size of another jump * instruction, and so on... All these operations are handled automatically * by this method. <p> <i>This method must be called after all the method * that is being built has been visited</i>. In particular, the * {@link Label Label} objects used to construct the method are no longer * valid after this method has been called. * * @param indexes current positions of the instructions to be resized. Each * instruction must be designated by the index of its <i>last</i> * byte, plus one (or, in other words, by the index of the <i>first</i> * byte of the <i>next</i> instruction). * @param sizes the number of bytes to be <i>added</i> to the above * instructions. More precisely, for each i < <tt>len</tt>, * <tt>sizes</tt>[i] bytes will be added at the end of the * instruction designated by <tt>indexes</tt>[i] or, if * <tt>sizes</tt>[i] is negative, the <i>last</i> |<tt>sizes[i]</tt>| * bytes of the instruction will be removed (the instruction size * <i>must not</i> become negative or null). The gaps introduced by * this method must be filled in "manually" in {@link #code code} * method. * @param len the number of instruction to be resized. Must be smaller than * or equal to <tt>indexes</tt>.length and <tt>sizes</tt>.length. * @return the <tt>indexes</tt> array, which now contains the new * positions of the resized instructions (designated as above). */ private int[] resizeInstructions( final int[] indexes, final int[] sizes, final int len) { byte[] b = code.data; // bytecode of the method int u, v, label; // indexes in b int i, j; // loop indexes /* * 1st step: As explained above, resizing an instruction may require to * resize another one, which may require to resize yet another one, and * so on. The first step of the algorithm consists in finding all the * instructions that need to be resized, without modifying the code. * This is done by the following "fix point" algorithm: * * Parse the code to find the jump instructions whose offset will need * more than 2 bytes to be stored (the future offset is computed from * the current offset and from the number of bytes that will be inserted * or removed between the source and target instructions). For each such * instruction, adds an entry in (a copy of) the indexes and sizes * arrays (if this has not already been done in a previous iteration!). * * If at least one entry has been added during the previous step, go * back to the beginning, otherwise stop. * * In fact the real algorithm is complicated by the fact that the size * of TABLESWITCH and LOOKUPSWITCH instructions depends on their * position in the bytecode (because of padding). In order to ensure the * convergence of the algorithm, the number of bytes to be added or * removed from these instructions is over estimated during the previous * loop, and computed exactly only after the loop is finished (this * requires another pass to parse the bytecode of the method). */ int[] allIndexes = new int[len]; // copy of indexes int[] allSizes = new int[len]; // copy of sizes boolean[] resize; // instructions to be resized int newOffset; // future offset of a jump instruction System.arraycopy(indexes, 0, allIndexes, 0, len); System.arraycopy(sizes, 0, allSizes, 0, len); resize = new boolean[code.length]; // 3 = loop again, 2 = loop ended, 1 = last pass, 0 = done int state = 3; do { if (state == 3) { state = 2; } u = 0; while (u < b.length) { int opcode = b[u] & 0xFF; // opcode of current instruction int insert = 0; // bytes to be added after this instruction switch (ClassWriter.TYPE[opcode]) { case ClassWriter.NOARG_INSN: case ClassWriter.IMPLVAR_INSN: u += 1; break; case ClassWriter.LABEL_INSN: if (opcode > 201) { // converts temporary opcodes 202 to 217, 218 and // 219 to IFEQ ... JSR (inclusive), IFNULL and // IFNONNULL opcode = opcode < 218 ? opcode - 49 : opcode - 20; label = u + readUnsignedShort(b, u + 1); } else { label = u + readShort(b, u + 1); } newOffset = getNewOffset(allIndexes, allSizes, u, label); if (newOffset < Short.MIN_VALUE || newOffset > Short.MAX_VALUE) { if (!resize[u]) { if (opcode == Opcodes.GOTO || opcode == Opcodes.JSR) { // two additional bytes will be required to // replace this GOTO or JSR instruction with // a GOTO_W or a JSR_W insert = 2; } else { // five additional bytes will be required to // replace this IFxxx <l> instruction with // IFNOTxxx <l'> GOTO_W <l>, where IFNOTxxx // is the "opposite" opcode of IFxxx (i.e., // IFNE for IFEQ) and where <l'> designates // the instruction just after the GOTO_W. insert = 5; } resize[u] = true; } } u += 3; break; case ClassWriter.LABELW_INSN: u += 5; break; case ClassWriter.TABL_INSN: if (state == 1) { // true number of bytes to be added (or removed) // from this instruction = (future number of padding // bytes - current number of padding byte) - // previously over estimated variation = // = ((3 - newOffset%4) - (3 - u%4)) - u%4 // = (-newOffset%4 + u%4) - u%4 // = -(newOffset & 3) newOffset = getNewOffset(allIndexes, allSizes, 0, u); insert = -(newOffset & 3); } else if (!resize[u]) { // over estimation of the number of bytes to be // added to this instruction = 3 - current number // of padding bytes = 3 - (3 - u%4) = u%4 = u & 3 insert = u & 3; resize[u] = true; } // skips instruction u = u + 4 - (u & 3); u += 4 * (readInt(b, u + 8) - readInt(b, u + 4) + 1) + 12; break; case ClassWriter.LOOK_INSN: if (state == 1) { // like TABL_INSN newOffset = getNewOffset(allIndexes, allSizes, 0, u); insert = -(newOffset & 3); } else if (!resize[u]) { // like TABL_INSN insert = u & 3; resize[u] = true; } // skips instruction u = u + 4 - (u & 3); u += 8 * readInt(b, u + 4) + 8; break; case ClassWriter.WIDE_INSN: opcode = b[u + 1] & 0xFF; if (opcode == Opcodes.IINC) { u += 6; } else { u += 4; } break; case ClassWriter.VAR_INSN: case ClassWriter.SBYTE_INSN: case ClassWriter.LDC_INSN: u += 2; break; case ClassWriter.SHORT_INSN: case ClassWriter.LDCW_INSN: case ClassWriter.FIELDORMETH_INSN: case ClassWriter.TYPE_INSN: case ClassWriter.IINC_INSN: u += 3; break; case ClassWriter.ITFMETH_INSN: u += 5; break; // case ClassWriter.MANA_INSN: default: u += 4; break; } if (insert != 0) { // adds a new (u, insert) entry in the allIndexes and // allSizes arrays int[] newIndexes = new int[allIndexes.length + 1]; int[] newSizes = new int[allSizes.length + 1]; System.arraycopy(allIndexes, 0, newIndexes, 0, allIndexes.length); System.arraycopy(allSizes, 0, newSizes, 0, allSizes.length); newIndexes[allIndexes.length] = u; newSizes[allSizes.length] = insert; allIndexes = newIndexes; allSizes = newSizes; if (insert > 0) { state = 3; } } } if (state < 3) { --state; } } while (state != 0); // 2nd step: // copies the bytecode of the method into a new bytevector, updates the // offsets, and inserts (or removes) bytes as requested. ByteVector newCode = new ByteVector(code.length); u = 0; while (u < code.length) { for (i = allIndexes.length - 1; i >= 0; --i) { if (allIndexes[i] == u) { if (i < len) { if (sizes[i] > 0) { newCode.putByteArray(null, 0, sizes[i]); } else { newCode.length += sizes[i]; } indexes[i] = newCode.length; } } } int opcode = b[u] & 0xFF; switch (ClassWriter.TYPE[opcode]) { case ClassWriter.NOARG_INSN: case ClassWriter.IMPLVAR_INSN: newCode.putByte(opcode); u += 1; break; case ClassWriter.LABEL_INSN: if (opcode > 201) { // changes temporary opcodes 202 to 217 (inclusive), 218 // and 219 to IFEQ ... JSR (inclusive), IFNULL and // IFNONNULL opcode = opcode < 218 ? opcode - 49 : opcode - 20; label = u + readUnsignedShort(b, u + 1); } else { label = u + readShort(b, u + 1); } newOffset = getNewOffset(allIndexes, allSizes, u, label); if (resize[u]) { // replaces GOTO with GOTO_W, JSR with JSR_W and IFxxx // <l> with IFNOTxxx <l'> GOTO_W <l>, where IFNOTxxx is // the "opposite" opcode of IFxxx (i.e., IFNE for IFEQ) // and where <l'> designates the instruction just after // the GOTO_W. if (opcode == Opcodes.GOTO) { newCode.putByte(200); // GOTO_W } else if (opcode == Opcodes.JSR) { newCode.putByte(201); // JSR_W } else { newCode.putByte(opcode <= 166 ? ((opcode + 1) ^ 1) - 1 : opcode ^ 1); newCode.putShort(8); // jump offset newCode.putByte(200); // GOTO_W // newOffset now computed from start of GOTO_W newOffset -= 3; } newCode.putInt(newOffset); } else { newCode.putByte(opcode); newCode.putShort(newOffset); } u += 3; break; case ClassWriter.LABELW_INSN: label = u + readInt(b, u + 1); newOffset = getNewOffset(allIndexes, allSizes, u, label); newCode.putByte(opcode); newCode.putInt(newOffset); u += 5; break; case ClassWriter.TABL_INSN: // skips 0 to 3 padding bytes v = u; u = u + 4 - (v & 3); // reads and copies instruction newCode.putByte(Opcodes.TABLESWITCH); while (newCode.length % 4 != 0) { newCode.putByte(0); } label = v + readInt(b, u); u += 4; newOffset = getNewOffset(allIndexes, allSizes, v, label); newCode.putInt(newOffset); j = readInt(b, u); u += 4; newCode.putInt(j); j = readInt(b, u) - j + 1; u += 4; newCode.putInt(readInt(b, u - 4)); for (; j > 0; --j) { label = v + readInt(b, u); u += 4; newOffset = getNewOffset(allIndexes, allSizes, v, label); newCode.putInt(newOffset); } break; case ClassWriter.LOOK_INSN: // skips 0 to 3 padding bytes v = u; u = u + 4 - (v & 3); // reads and copies instruction newCode.putByte(Opcodes.LOOKUPSWITCH); while (newCode.length % 4 != 0) { newCode.putByte(0); } label = v + readInt(b, u); u += 4; newOffset = getNewOffset(allIndexes, allSizes, v, label); newCode.putInt(newOffset); j = readInt(b, u); u += 4; newCode.putInt(j); for (; j > 0; --j) { newCode.putInt(readInt(b, u)); u += 4; label = v + readInt(b, u); u += 4; newOffset = getNewOffset(allIndexes, allSizes, v, label); newCode.putInt(newOffset); } break; case ClassWriter.WIDE_INSN: opcode = b[u + 1] & 0xFF; if (opcode == Opcodes.IINC) { newCode.putByteArray(b, u, 6); u += 6; } else { newCode.putByteArray(b, u, 4); u += 4; } break; case ClassWriter.VAR_INSN: case ClassWriter.SBYTE_INSN: case ClassWriter.LDC_INSN: newCode.putByteArray(b, u, 2); u += 2; break; case ClassWriter.SHORT_INSN: case ClassWriter.LDCW_INSN: case ClassWriter.FIELDORMETH_INSN: case ClassWriter.TYPE_INSN: case ClassWriter.IINC_INSN: newCode.putByteArray(b, u, 3); u += 3; break; case ClassWriter.ITFMETH_INSN: newCode.putByteArray(b, u, 5); u += 5; break; // case MANA_INSN: default: newCode.putByteArray(b, u, 4); u += 4; break; } } // updates the exception handler block labels Handler h = catchTable; while (h != null) { getNewOffset(allIndexes, allSizes, h.start); getNewOffset(allIndexes, allSizes, h.end); getNewOffset(allIndexes, allSizes, h.handler); h = h.next; } for (i = 0; i < 2; ++i) { ByteVector bv = i == 0 ? localVar : localVarType; if (bv != null) { b = bv.data; u = 0; while (u < bv.length) { label = readUnsignedShort(b, u); newOffset = getNewOffset(allIndexes, allSizes, 0, label); writeShort(b, u, newOffset); label += readUnsignedShort(b, u + 2); newOffset = getNewOffset(allIndexes, allSizes, 0, label) - newOffset; writeShort(b, u + 2, newOffset); u += 10; } } } if (lineNumber != null) { b = lineNumber.data; u = 0; while (u < lineNumber.length) { writeShort(b, u, getNewOffset(allIndexes, allSizes, 0, readUnsignedShort(b, u))); u += 4; } } // updates the labels of the other attributes while (cattrs != null) { Label[] labels = cattrs.getLabels(); if (labels != null) { for (i = labels.length - 1; i >= 0; --i) { if (!labels[i].resized) { labels[i].position = getNewOffset(allIndexes, allSizes, 0, labels[i].position); labels[i].resized = true; } } } } // replaces old bytecodes with new ones code = newCode; // returns the positions of the resized instructions return indexes; } /** * Reads an unsigned short value in the given byte array. * * @param b a byte array. * @param index the start index of the value to be read. * @return the read value. */ static int readUnsignedShort(final byte[] b, final int index) { return ((b[index] & 0xFF) << 8) | (b[index + 1] & 0xFF); } /** * Reads a signed short value in the given byte array. * * @param b a byte array. * @param index the start index of the value to be read. * @return the read value. */ static short readShort(final byte[] b, final int index) { return (short) (((b[index] & 0xFF) << 8) | (b[index + 1] & 0xFF)); } /** * Reads a signed int value in the given byte array. * * @param b a byte array. * @param index the start index of the value to be read. * @return the read value. */ static int readInt(final byte[] b, final int index) { return ((b[index] & 0xFF) << 24) | ((b[index + 1] & 0xFF) << 16) | ((b[index + 2] & 0xFF) << 8) | (b[index + 3] & 0xFF); } /** * Writes a short value in the given byte array. * * @param b a byte array. * @param index where the first byte of the short value must be written. * @param s the value to be written in the given byte array. */ static void writeShort(final byte[] b, final int index, final int s) { b[index] = (byte) (s >>> 8); b[index + 1] = (byte) s; } /** * Computes the future value of a bytecode offset. <p> Note: it is possible * to have several entries for the same instruction in the <tt>indexes</tt> * and <tt>sizes</tt>: two entries (index=a,size=b) and (index=a,size=b') * are equivalent to a single entry (index=a,size=b+b'). * * @param indexes current positions of the instructions to be resized. Each * instruction must be designated by the index of its <i>last</i> * byte, plus one (or, in other words, by the index of the <i>first</i> * byte of the <i>next</i> instruction). * @param sizes the number of bytes to be <i>added</i> to the above * instructions. More precisely, for each i < <tt>len</tt>, * <tt>sizes</tt>[i] bytes will be added at the end of the * instruction designated by <tt>indexes</tt>[i] or, if * <tt>sizes</tt>[i] is negative, the <i>last</i> |<tt>sizes[i]</tt>| * bytes of the instruction will be removed (the instruction size * <i>must not</i> become negative or null). * @param begin index of the first byte of the source instruction. * @param end index of the first byte of the target instruction. * @return the future value of the given bytecode offset. */ static int getNewOffset( final int[] indexes, final int[] sizes, final int begin, final int end) { int offset = end - begin; for (int i = 0; i < indexes.length; ++i) { if (begin < indexes[i] && indexes[i] <= end) { // forward jump offset += sizes[i]; } else if (end < indexes[i] && indexes[i] <= begin) { // backward jump offset -= sizes[i]; } } return offset; } /** * Updates the offset of the given label. * * @param indexes current positions of the instructions to be resized. Each * instruction must be designated by the index of its <i>last</i> * byte, plus one (or, in other words, by the index of the <i>first</i> * byte of the <i>next</i> instruction). * @param sizes the number of bytes to be <i>added</i> to the above * instructions. More precisely, for each i < <tt>len</tt>, * <tt>sizes</tt>[i] bytes will be added at the end of the * instruction designated by <tt>indexes</tt>[i] or, if * <tt>sizes</tt>[i] is negative, the <i>last</i> |<tt>sizes[i]</tt>| * bytes of the instruction will be removed (the instruction size * <i>must not</i> become negative or null). * @param label the label whose offset must be updated. */ static void getNewOffset( final int[] indexes, final int[] sizes, final Label label) { if (!label.resized) { label.position = getNewOffset(indexes, sizes, 0, label.position); label.resized = true; } } }