/* BoxView.java -- An composite view Copyright (C) 2005, 2006 Free Software Foundation, Inc. This file is part of GNU Classpath. GNU Classpath is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU Classpath is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Classpath; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. Linking this library statically or dynamically with other modules is making a combined work based on this library. Thus, the terms and conditions of the GNU General Public License cover the whole combination. As a special exception, the copyright holders of this library give you permission to link this library with independent modules to produce an executable, regardless of the license terms of these independent modules, and to copy and distribute the resulting executable under terms of your choice, provided that you also meet, for each linked independent module, the terms and conditions of the license of that module. An independent module is a module which is not derived from or based on this library. If you modify this library, you may extend this exception to your version of the library, but you are not obligated to do so. If you do not wish to do so, delete this exception statement from your version. */ package javax.swing.text; import java.awt.Container; import java.awt.Graphics; import java.awt.Rectangle; import java.awt.Shape; import javax.swing.SizeRequirements; import javax.swing.event.DocumentEvent; /** * An implementation of {@link CompositeView} that arranges its children in * a box along one axis. This is comparable to how the <code>BoxLayout</code> * works, but for <code>View</code> children. * * @author Roman Kennke (roman@kennke.org) */ public class BoxView extends CompositeView { /** * The axis along which this <code>BoxView</code> is laid out. */ private int myAxis; /** * Indicates if the layout is valid along X_AXIS or Y_AXIS. */ private boolean[] layoutValid = new boolean[2]; /** * Indicates if the requirements for an axis are valid. */ private boolean[] requirementsValid = new boolean[2]; /** * The spans along the X_AXIS and Y_AXIS. */ private int[][] spans = new int[2][]; /** * The offsets of the children along the X_AXIS and Y_AXIS. */ private int[][] offsets = new int[2][]; /** * The size requirements along the X_AXIS and Y_AXIS. */ private SizeRequirements[] requirements = new SizeRequirements[2]; /** * The current span along X_AXIS or Y_AXIS. */ private int[] span = new int[2]; /** * Creates a new <code>BoxView</code> for the given * <code>Element</code> and axis. Valid values for the axis are * {@link View#X_AXIS} and {@link View#Y_AXIS}. * * @param element the element that is rendered by this BoxView * @param axis the axis along which the box is laid out */ public BoxView(Element element, int axis) { super(element); myAxis = axis; layoutValid[0] = false; layoutValid[1] = false; requirementsValid[X_AXIS] = false; requirementsValid[Y_AXIS] = false; span[0] = 0; span[1] = 0; requirements[0] = new SizeRequirements(); requirements[1] = new SizeRequirements(); // Initialize the cache arrays. spans[0] = new int[0]; spans[1] = new int[0]; offsets[0] = new int[0]; offsets[1] = new int[0]; } /** * Returns the axis along which this <code>BoxView</code> is laid out. * * @return the axis along which this <code>BoxView</code> is laid out * * @since 1.3 */ public int getAxis() { return myAxis; } /** * Sets the axis along which this <code>BoxView</code> is laid out. * * Valid values for the axis are {@link View#X_AXIS} and * {@link View#Y_AXIS}. * * @param axis the axis along which this <code>BoxView</code> is laid out * * @since 1.3 */ public void setAxis(int axis) { boolean changed = axis != myAxis; myAxis = axis; if (changed) preferenceChanged(null, true, true); } /** * Marks the layout along the specified axis as invalid. This is triggered * automatically when any of the child view changes its preferences * via {@link #preferenceChanged(View, boolean, boolean)}. * * The layout will be updated the next time when * {@link #setSize(float, float)} is called, typically from within the * {@link #paint(Graphics, Shape)} method. * * Valid values for the axis are {@link View#X_AXIS} and * {@link View#Y_AXIS}. * * @param axis an <code>int</code> value * * @since 1.3 */ public void layoutChanged(int axis) { if (axis != X_AXIS && axis != Y_AXIS) throw new IllegalArgumentException("Invalid axis parameter."); layoutValid[axis] = false; } /** * Returns <code>true</code> if the layout along the specified * <code>axis</code> is valid, <code>false</code> otherwise. * * Valid values for the axis are {@link View#X_AXIS} and * {@link View#Y_AXIS}. * * @param axis the axis * * @return <code>true</code> if the layout along the specified * <code>axis</code> is valid, <code>false</code> otherwise * * @since 1.4 */ protected boolean isLayoutValid(int axis) { if (axis != X_AXIS && axis != Y_AXIS) throw new IllegalArgumentException("Invalid axis parameter."); return layoutValid[axis]; } /** * Paints the child <code>View</code> at the specified <code>index</code>. * This method modifies the actual values in <code>alloc</code> so make * sure you have a copy of the original values if you need them. * * @param g the <code>Graphics</code> context to paint to * @param alloc the allocated region for the child to paint into * @param index the index of the child to be painted * * @see #childAllocation(int, Rectangle) */ protected void paintChild(Graphics g, Rectangle alloc, int index) { View child = getView(index); child.paint(g, alloc); } /** * Replaces child views by some other child views. If there are no views to * remove (<code>length == 0</code>), the result is a simple insert, if * there are no children to add (<code>view == null</code>) the result * is a simple removal. * * In addition this invalidates the layout and resizes the internal cache * for the child allocations. The old children's cached allocations can * still be accessed (although they are not guaranteed to be valid), and * the new children will have an initial offset and span of 0. * * @param offset the start offset from where to remove children * @param length the number of children to remove * @param views the views that replace the removed children */ public void replace(int offset, int length, View[] views) { // Actually perform the replace. super.replace(offset, length, views); // Resize and copy data for cache arrays. int newItems = views != null ? views.length : 0; int minor = 1 - myAxis; offsets[myAxis] = replaceLayoutArray(offsets[myAxis], offset, newItems); spans[myAxis] = replaceLayoutArray(spans[myAxis], offset, newItems); layoutValid[myAxis] = false; requirementsValid[myAxis] = false; offsets[minor] = replaceLayoutArray(offsets[minor], offset, newItems); spans[minor] = replaceLayoutArray(spans[minor], offset, newItems); layoutValid[minor] = false; requirementsValid[minor] = false; } /** * Helper method. This updates the layout cache arrays in response * to a call to {@link #replace(int, int, View[])}. * * @param oldArray the old array * * @return the replaced array */ private int[] replaceLayoutArray(int[] oldArray, int offset, int newItems) { int num = getViewCount(); int[] newArray = new int[num]; System.arraycopy(oldArray, 0, newArray, 0, offset); System.arraycopy(oldArray, offset, newArray, offset + newItems, num - newItems - offset); return newArray; } /** * A Rectangle instance to be reused in the paint() method below. */ private final Rectangle tmpRect = new Rectangle(); private Rectangle clipRect = new Rectangle(); /** * Renders the <code>Element</code> that is associated with this * <code>View</code>. * * @param g the <code>Graphics</code> context to render to * @param a the allocated region for the <code>Element</code> */ public void paint(Graphics g, Shape a) { // Try to avoid allocation if possible (almost all cases). Rectangle alloc = a instanceof Rectangle ? (Rectangle) a : a.getBounds(); // This returns a cached instance. alloc = getInsideAllocation(alloc); int count = getViewCount(); for (int i = 0; i < count; i++) { View child = getView(i); tmpRect.setBounds(alloc); childAllocation(i, tmpRect); if (g.hitClip(tmpRect.x, tmpRect.y, tmpRect.width, tmpRect.height)) paintChild(g, tmpRect, i); } } /** * Returns the preferred span of the content managed by this * <code>View</code> along the specified <code>axis</code>. * * @param axis the axis * * @return the preferred span of this <code>View</code>. */ public float getPreferredSpan(int axis) { updateRequirements(axis); // Add margin. float margin; if (axis == X_AXIS) margin = getLeftInset() + getRightInset(); else margin = getTopInset() + getBottomInset(); return requirements[axis].preferred + margin; } /** * Returns the maximum span of this view along the specified axis. * This returns <code>Integer.MAX_VALUE</code> for the minor axis * and the preferred span for the major axis. * * @param axis the axis * * @return the maximum span of this view along the specified axis */ public float getMaximumSpan(int axis) { updateRequirements(axis); // Add margin. float margin; if (axis == X_AXIS) margin = getLeftInset() + getRightInset(); else margin = getTopInset() + getBottomInset(); return requirements[axis].maximum + margin; } /** * Returns the minimum span of this view along the specified axis. * This calculates the minimum span using * {@link #calculateMajorAxisRequirements} or * {@link #calculateMinorAxisRequirements} (depending on the axis) and * returns the resulting minimum span. * * @param axis the axis * * @return the minimum span of this view along the specified axis */ public float getMinimumSpan(int axis) { updateRequirements(axis); // Add margin. float margin; if (axis == X_AXIS) margin = getLeftInset() + getRightInset(); else margin = getTopInset() + getBottomInset(); return requirements[axis].minimum + margin; } /** * Calculates size requirements for a baseline layout. This is not * used by the BoxView itself, but by subclasses that wish to perform * a baseline layout, like the FlowView's rows. * * @param axis the axis that is examined * @param sr the <code>SizeRequirements</code> object to hold the result, * if <code>null</code>, a new one is created * * @return the size requirements for this <code>BoxView</code> along * the specified axis */ protected SizeRequirements baselineRequirements(int axis, SizeRequirements sr) { // Create new instance if sr == null. if (sr == null) sr = new SizeRequirements(); sr.alignment = 0.5F; // Calculate overall ascent and descent. int totalAscentMin = 0; int totalAscentPref = 0; int totalAscentMax = 0; int totalDescentMin = 0; int totalDescentPref = 0; int totalDescentMax = 0; int count = getViewCount(); for (int i = 0; i < count; i++) { View v = getView(i); float align = v.getAlignment(axis); int span = (int) v.getPreferredSpan(axis); int ascent = (int) (align * span); int descent = span - ascent; totalAscentPref = Math.max(ascent, totalAscentPref); totalDescentPref = Math.max(descent, totalDescentPref); if (v.getResizeWeight(axis) > 0) { // If the view is resizable, then use the min and max size // of the view. span = (int) v.getMinimumSpan(axis); ascent = (int) (align * span); descent = span - ascent; totalAscentMin = Math.max(ascent, totalAscentMin); totalDescentMin = Math.max(descent, totalDescentMin); span = (int) v.getMaximumSpan(axis); ascent = (int) (align * span); descent = span - ascent; totalAscentMax = Math.max(ascent, totalAscentMax); totalDescentMax = Math.max(descent, totalDescentMax); } else { // If the view is not resizable, use the preferred span. totalAscentMin = Math.max(ascent, totalAscentMin); totalDescentMin = Math.max(descent, totalDescentMin); totalAscentMax = Math.max(ascent, totalAscentMax); totalDescentMax = Math.max(descent, totalDescentMax); } } // Preferred overall span is the sum of the preferred ascent and descent. // With overflow check. sr.preferred = (int) Math.min((long) totalAscentPref + (long) totalDescentPref, Integer.MAX_VALUE); // Align along the baseline. if (sr.preferred > 0) sr.alignment = (float) totalAscentPref / sr.preferred; if (sr.alignment == 0) { // Nothing above the baseline, use the descent. sr.minimum = totalDescentMin; sr.maximum = totalDescentMax; } else if (sr.alignment == 1.0F) { // Nothing below the baseline, use the descent. sr.minimum = totalAscentMin; sr.maximum = totalAscentMax; } else { sr.minimum = Math.max((int) (totalAscentMin / sr.alignment), (int) (totalDescentMin / (1.0F - sr.alignment))); sr.maximum = Math.min((int) (totalAscentMax / sr.alignment), (int) (totalDescentMax / (1.0F - sr.alignment))); } return sr; } /** * Calculates the baseline layout of the children of this * <code>BoxView</code> along the specified axis. * * This is not used by the BoxView itself, but by subclasses that wish to * perform a baseline layout, like the FlowView's rows. * * @param span the target span * @param axis the axis that is examined * @param offsets an empty array, filled with the offsets of the children * @param spans an empty array, filled with the spans of the children */ protected void baselineLayout(int span, int axis, int[] offsets, int[] spans) { int totalAscent = (int) (span * getAlignment(axis)); int totalDescent = span - totalAscent; int count = getViewCount(); for (int i = 0; i < count; i++) { View v = getView(i); float align = v.getAlignment(axis); int viewSpan; if (v.getResizeWeight(axis) > 0) { // If possible, then resize for best fit. int min = (int) v.getMinimumSpan(axis); int max = (int) v.getMaximumSpan(axis); if (align == 0.0F) viewSpan = Math.max(Math.min(max, totalDescent), min); else if (align == 1.0F) viewSpan = Math.max(Math.min(max, totalAscent), min); else { int fit = (int) Math.min(totalAscent / align, totalDescent / (1.0F - align)); viewSpan = Math.max(Math.min(max, fit), min); } } else viewSpan = (int) v.getPreferredSpan(axis); offsets[i] = totalAscent - (int) (viewSpan * align); spans[i] = viewSpan; } } /** * Calculates the size requirements of this <code>BoxView</code> along * its major axis, that is the axis specified in the constructor. * * @param axis the axis that is examined * @param sr the <code>SizeRequirements</code> object to hold the result, * if <code>null</code>, a new one is created * * @return the size requirements for this <code>BoxView</code> along * the specified axis */ protected SizeRequirements calculateMajorAxisRequirements(int axis, SizeRequirements sr) { SizeRequirements res = sr; if (res == null) res = new SizeRequirements(); float min = 0; float pref = 0; float max = 0; int n = getViewCount(); for (int i = 0; i < n; i++) { View child = getView(i); min += child.getMinimumSpan(axis); pref += child.getPreferredSpan(axis); max += child.getMaximumSpan(axis); } res.minimum = (int) min; res.preferred = (int) pref; res.maximum = (int) max; res.alignment = 0.5F; return res; } /** * Calculates the size requirements of this <code>BoxView</code> along * its minor axis, that is the axis opposite to the axis specified in the * constructor. * * @param axis the axis that is examined * @param sr the <code>SizeRequirements</code> object to hold the result, * if <code>null</code>, a new one is created * * @return the size requirements for this <code>BoxView</code> along * the specified axis */ protected SizeRequirements calculateMinorAxisRequirements(int axis, SizeRequirements sr) { SizeRequirements res = sr; if (res == null) res = new SizeRequirements(); res.minimum = 0; res.preferred = 0; res.maximum = Integer.MAX_VALUE; res.alignment = 0.5F; int n = getViewCount(); for (int i = 0; i < n; i++) { View child = getView(i); res.minimum = Math.max((int) child.getMinimumSpan(axis), res.minimum); res.preferred = Math.max((int) child.getPreferredSpan(axis), res.preferred); res.maximum = Math.max((int) child.getMaximumSpan(axis), res.maximum); } return res; } /** * Returns <code>true</code> if the specified point lies before the * given <code>Rectangle</code>, <code>false</code> otherwise. * * "Before" is typically defined as being to the left or above. * * @param x the X coordinate of the point * @param y the Y coordinate of the point * @param r the rectangle to test the point against * * @return <code>true</code> if the specified point lies before the * given <code>Rectangle</code>, <code>false</code> otherwise */ protected boolean isBefore(int x, int y, Rectangle r) { boolean result = false; if (myAxis == X_AXIS) result = x < r.x; else result = y < r.y; return result; } /** * Returns <code>true</code> if the specified point lies after the * given <code>Rectangle</code>, <code>false</code> otherwise. * * "After" is typically defined as being to the right or below. * * @param x the X coordinate of the point * @param y the Y coordinate of the point * @param r the rectangle to test the point against * * @return <code>true</code> if the specified point lies after the * given <code>Rectangle</code>, <code>false</code> otherwise */ protected boolean isAfter(int x, int y, Rectangle r) { boolean result = false; if (myAxis == X_AXIS) result = x > r.x + r.width; else result = y > r.y + r.height; return result; } /** * Returns the child <code>View</code> at the specified location. * * @param x the X coordinate * @param y the Y coordinate * @param r the inner allocation of this <code>BoxView</code> on entry, * the allocation of the found child on exit * * @return the child <code>View</code> at the specified location */ protected View getViewAtPoint(int x, int y, Rectangle r) { View result = null; int count = getViewCount(); if (myAxis == X_AXIS) { // Border case. Requested point is left from the box. if (x < r.x + offsets[X_AXIS][0]) { childAllocation(0, r); result = getView(0); } else { // Search views inside box. for (int i = 0; i < count && result == null; i++) { if (x < r.x + offsets[X_AXIS][i]) { childAllocation(i - 1, r); result = getView(i - 1); } } } } else // Same algorithm for Y_AXIS. { // Border case. Requested point is above the box. if (y < r.y + offsets[Y_AXIS][0]) { childAllocation(0, r); result = getView(0); } else { // Search views inside box. for (int i = 0; i < count && result == null; i++) { if (y < r.y + offsets[Y_AXIS][i]) { childAllocation(i - 1, r); result = getView(i - 1); } } } } // Not found, other border case: point is right from or below the box. if (result == null) { childAllocation(count - 1, r); result = getView(count - 1); } return result; } /** * Computes the allocation for a child <code>View</code>. The parameter * <code>a</code> stores the allocation of this <code>CompositeView</code> * and is then adjusted to hold the allocation of the child view. * * @param index * the index of the child <code>View</code> * @param a * the allocation of this <code>CompositeView</code> before the * call, the allocation of the child on exit */ protected void childAllocation(int index, Rectangle a) { a.x += offsets[X_AXIS][index]; a.y += offsets[Y_AXIS][index]; a.width = spans[X_AXIS][index]; a.height = spans[Y_AXIS][index]; } /** * Lays out the children of this <code>BoxView</code> with the specified * bounds. * * @param width the width of the allocated region for the children (that * is the inner allocation of this <code>BoxView</code> * @param height the height of the allocated region for the children (that * is the inner allocation of this <code>BoxView</code> */ protected void layout(int width, int height) { layoutAxis(X_AXIS, width); layoutAxis(Y_AXIS, height); } private void layoutAxis(int axis, int s) { if (span[axis] != s) layoutValid[axis] = false; if (! layoutValid[axis]) { span[axis] = s; updateRequirements(axis); if (axis == myAxis) layoutMajorAxis(span[axis], axis, offsets[axis], spans[axis]); else layoutMinorAxis(span[axis], axis, offsets[axis], spans[axis]); layoutValid[axis] = true; // Push out child layout. int viewCount = getViewCount(); for (int i = 0; i < viewCount; i++) { View v = getView(i); v.setSize(spans[X_AXIS][i], spans[Y_AXIS][i]); } } } /** * Performs the layout along the major axis of a <code>BoxView</code>. * * @param targetSpan the (inner) span of the <code>BoxView</code> in which * to layout the children * @param axis the axis along which the layout is performed * @param offsets the array that holds the offsets of the children on exit * @param spans the array that holds the spans of the children on exit */ protected void layoutMajorAxis(int targetSpan, int axis, int[] offsets, int[] spans) { // Set the spans to the preferred sizes. Determine the space // that we have to adjust the sizes afterwards. long sumPref = 0; int n = getViewCount(); for (int i = 0; i < n; i++) { View child = getView(i); spans[i] = (int) child.getPreferredSpan(axis); sumPref += spans[i]; } // Try to adjust the spans so that we fill the targetSpan. long diff = targetSpan - sumPref; float factor = 0.0F; int[] diffs = null; if (diff != 0) { long total = 0; diffs = new int[n]; for (int i = 0; i < n; i++) { View child = getView(i); int span; if (diff < 0) { span = (int) child.getMinimumSpan(axis); diffs[i] = spans[i] - span; } else { span = (int) child.getMaximumSpan(axis); diffs[i] = span - spans[i]; } total += span; } float maxAdjust = Math.abs(total - sumPref); factor = diff / maxAdjust; factor = Math.min(factor, 1.0F); factor = Math.max(factor, -1.0F); } // Actually perform adjustments. int totalOffs = 0; for (int i = 0; i < n; i++) { offsets[i] = totalOffs; if (diff != 0) { float adjust = factor * diffs[i]; spans[i] += Math.round(adjust); } // Avoid overflow here. totalOffs = (int) Math.min((long) totalOffs + (long) spans[i], Integer.MAX_VALUE); } } /** * Performs the layout along the minor axis of a <code>BoxView</code>. * * @param targetSpan the (inner) span of the <code>BoxView</code> in which * to layout the children * @param axis the axis along which the layout is performed * @param offsets the array that holds the offsets of the children on exit * @param spans the array that holds the spans of the children on exit */ protected void layoutMinorAxis(int targetSpan, int axis, int[] offsets, int[] spans) { int count = getViewCount(); for (int i = 0; i < count; i++) { View child = getView(i); int max = (int) child.getMaximumSpan(axis); if (max < targetSpan) { // Align child when it can't be made as wide as the target span. float align = child.getAlignment(axis); offsets[i] = (int) ((targetSpan - max) * align); spans[i] = max; } else { // Expand child to target width if possible. int min = (int) child.getMinimumSpan(axis); offsets[i] = 0; spans[i] = Math.max(min, targetSpan); } } } /** * Returns <code>true</code> if the cached allocations for the children * are still valid, <code>false</code> otherwise. * * @return <code>true</code> if the cached allocations for the children * are still valid, <code>false</code> otherwise */ protected boolean isAllocationValid() { return isLayoutValid(X_AXIS) && isLayoutValid(Y_AXIS); } /** * Return the current width of the box. This is the last allocated width. * * @return the current width of the box */ public int getWidth() { // The RI returns the following here, however, I'd think that is a bug. // return span[X_AXIS] + getLeftInset() - getRightInset(); return span[X_AXIS] + getLeftInset() + getRightInset(); } /** * Return the current height of the box. This is the last allocated height. * * @return the current height of the box */ public int getHeight() { // The RI returns the following here, however, I'd think that is a bug. // return span[Y_AXIS] + getTopInset() - getBottomInset(); return span[Y_AXIS] + getTopInset() + getBottomInset(); } /** * Sets the size of the view. If the actual size has changed, the layout * is updated accordingly. * * @param width the new width * @param height the new height */ public void setSize(float width, float height) { layout((int) (width - getLeftInset() - getRightInset()), (int) (height - getTopInset() - getBottomInset())); } /** * Returns the span for the child view with the given index for the specified * axis. * * @param axis the axis to examine, either <code>X_AXIS</code> or * <code>Y_AXIS</code> * @param childIndex the index of the child for for which to return the span * * @return the span for the child view with the given index for the specified * axis */ protected int getSpan(int axis, int childIndex) { if (axis != X_AXIS && axis != Y_AXIS) throw new IllegalArgumentException("Illegal axis argument"); return spans[axis][childIndex]; } /** * Returns the offset for the child view with the given index for the * specified axis. * * @param axis the axis to examine, either <code>X_AXIS</code> or * <code>Y_AXIS</code> * @param childIndex the index of the child for for which to return the span * * @return the offset for the child view with the given index for the * specified axis */ protected int getOffset(int axis, int childIndex) { if (axis != X_AXIS && axis != Y_AXIS) throw new IllegalArgumentException("Illegal axis argument"); return offsets[axis][childIndex]; } /** * Returns the alignment for this box view for the specified axis. The * axis that is tiled (the major axis) will be requested to be aligned * centered (0.5F). The minor axis alignment depends on the child view's * total alignment. * * @param axis the axis which is examined * * @return the alignment for this box view for the specified axis */ public float getAlignment(int axis) { updateRequirements(axis); return requirements[axis].alignment; } /** * Called by a child View when its preferred span has changed. * * @param width indicates that the preferred width of the child changed. * @param height indicates that the preferred height of the child changed. * @param child the child View. */ public void preferenceChanged(View child, boolean width, boolean height) { if (width) { layoutValid[X_AXIS] = false; requirementsValid[X_AXIS] = false; } if (height) { layoutValid[Y_AXIS] = false; requirementsValid[Y_AXIS] = false; } super.preferenceChanged(child, width, height); } /** * Maps the document model position <code>pos</code> to a Shape * in the view coordinate space. This method overrides CompositeView's * method to make sure the children are allocated properly before * calling the super's behaviour. */ public Shape modelToView(int pos, Shape a, Position.Bias bias) throws BadLocationException { // Make sure everything is allocated properly and then call super if (! isAllocationValid()) { Rectangle bounds = a.getBounds(); setSize(bounds.width, bounds.height); } return super.modelToView(pos, a, bias); } /** * Returns the resize weight of this view. A value of <code>0</code> or less * means this view is not resizeable. Positive values make the view * resizeable. This implementation returns <code>0</code> for the major * axis and <code>1</code> for the minor axis of this box view. * * @param axis the axis * * @return the resizability of this view along the specified axis * * @throws IllegalArgumentException if <code>axis</code> is invalid */ public int getResizeWeight(int axis) { if (axis != X_AXIS && axis != Y_AXIS) throw new IllegalArgumentException("Illegal axis argument"); updateRequirements(axis); int weight = 0; if ((requirements[axis].preferred != requirements[axis].minimum) || (requirements[axis].preferred != requirements[axis].maximum)) weight = 1; return weight; } /** * Returns the child allocation for the child view with the specified * <code>index</code>. If the layout is invalid, this returns * <code>null</code>. * * @param index the child view index * @param a the allocation to this view * * @return the child allocation for the child view with the specified * <code>index</code> or <code>null</code> if the layout is invalid * or <code>a</code> is null */ public Shape getChildAllocation(int index, Shape a) { Shape ret = null; if (isAllocationValid() && a != null) ret = super.getChildAllocation(index, a); return ret; } protected void forwardUpdate(DocumentEvent.ElementChange ec, DocumentEvent e, Shape a, ViewFactory vf) { boolean wasValid = isLayoutValid(myAxis); super.forwardUpdate(ec, e, a, vf); // Trigger repaint when one of the children changed the major axis. if (wasValid && ! isLayoutValid(myAxis)) { Container c = getContainer(); if (a != null && c != null) { int pos = e.getOffset(); int index = getViewIndexAtPosition(pos); Rectangle r = getInsideAllocation(a); if (myAxis == X_AXIS) { r.x += offsets[myAxis][index]; r.width -= offsets[myAxis][index]; } else { r.y += offsets[myAxis][index]; r.height -= offsets[myAxis][index]; } c.repaint(r.x, r.y, r.width, r.height); } } } public int viewToModel(float x, float y, Shape a, Position.Bias[] bias) { if (! isAllocationValid()) { Rectangle r = a instanceof Rectangle ? (Rectangle) a : a.getBounds(); setSize(r.width, r.height); } return super.viewToModel(x, y, a, bias); } protected boolean flipEastAndWestAtEnds(int position, Position.Bias bias) { // FIXME: What to do here? return super.flipEastAndWestAtEnds(position, bias); } /** * Updates the view's cached requirements along the specified axis if * necessary. The requirements are only updated if the layout for the * specified axis is marked as invalid. * * @param axis the axis */ private void updateRequirements(int axis) { if (axis != Y_AXIS && axis != X_AXIS) throw new IllegalArgumentException("Illegal axis: " + axis); if (! requirementsValid[axis]) { if (axis == myAxis) requirements[axis] = calculateMajorAxisRequirements(axis, requirements[axis]); else requirements[axis] = calculateMinorAxisRequirements(axis, requirements[axis]); requirementsValid[axis] = true; } } }