/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.jctools.queues; import org.jctools.util.Pow2; import org.jctools.util.UnsafeRefArrayAccess; import static org.jctools.util.UnsafeAccess.UNSAFE; import static org.jctools.util.UnsafeRefArrayAccess.lvElement; import static org.jctools.util.UnsafeRefArrayAccess.soElement; abstract class SpscArrayQueueColdField<E> extends ConcurrentCircularArrayQueue<E> { public static final int MAX_LOOK_AHEAD_STEP = Integer.getInteger("jctools.spsc.max.lookahead.step", 4096); protected final int lookAheadStep; public SpscArrayQueueColdField(int capacity) { super(capacity); lookAheadStep = Math.min(capacity/4, MAX_LOOK_AHEAD_STEP); } } abstract class SpscArrayQueueL1Pad<E> extends SpscArrayQueueColdField<E> { long p01, p02, p03, p04, p05, p06, p07; long p10, p11, p12, p13, p14, p15, p16, p17; public SpscArrayQueueL1Pad(int capacity) { super(capacity); } } abstract class SpscArrayQueueProducerFields<E> extends SpscArrayQueueL1Pad<E> { protected final static long P_INDEX_OFFSET; static { try { P_INDEX_OFFSET = UNSAFE.objectFieldOffset(SpscArrayQueueProducerFields.class.getDeclaredField("producerIndex")); } catch (NoSuchFieldException e) { throw new RuntimeException(e); } } protected long producerIndex; protected long producerLimit; public SpscArrayQueueProducerFields(int capacity) { super(capacity); } } abstract class SpscArrayQueueL2Pad<E> extends SpscArrayQueueProducerFields<E> { long p01, p02, p03, p04, p05, p06, p07; long p10, p11, p12, p13, p14, p15, p16, p17; public SpscArrayQueueL2Pad(int capacity) { super(capacity); } } abstract class SpscArrayQueueConsumerField<E> extends SpscArrayQueueL2Pad<E> { protected long consumerIndex; protected final static long C_INDEX_OFFSET; static { try { C_INDEX_OFFSET = UNSAFE.objectFieldOffset(SpscArrayQueueConsumerField.class.getDeclaredField("consumerIndex")); } catch (NoSuchFieldException e) { throw new RuntimeException(e); } } public SpscArrayQueueConsumerField(int capacity) { super(capacity); } } /** * A Single-Producer-Single-Consumer queue backed by a pre-allocated buffer. * <p> * This implementation is a mashup of the <a href="http://sourceforge.net/projects/mc-fastflow/">Fast Flow</a> * algorithm with an optimization of the offer method taken from the <a * href="http://staff.ustc.edu.cn/~bhua/publications/IJPP_draft.pdf">BQueue</a> algorithm (a variation on Fast * Flow), and adjusted to comply with Queue.offer semantics with regards to capacity.<br> * For convenience the relevant papers are available in the resources folder:<br> * <i>2010 - Pisa - SPSC Queues on Shared Cache Multi-Core Systems.pdf<br> * 2012 - Junchang- BQueue- Efficient and Practical Queuing.pdf <br> * </i> This implementation is wait free. * * @author nitsanw * * @param <E> */ public class SpscArrayQueue<E> extends SpscArrayQueueConsumerField<E> implements QueueProgressIndicators { long p01, p02, p03, p04, p05, p06, p07; long p10, p11, p12, p13, p14, p15, p16, p17; public SpscArrayQueue(final int capacity) { super(Math.max(Pow2.roundToPowerOfTwo(capacity), 4)); } /** * {@inheritDoc} * <p> * This implementation is correct for single producer thread use only. */ @Override public boolean offer(final E e) { if (null == e) { throw new NullPointerException(); } // local load of field to avoid repeated loads after volatile reads final E[] buffer = this.buffer; final long mask = this.mask; final long producerIndex = this.producerIndex; if (producerIndex >= producerLimit && !offerSlowPath(buffer, mask, producerIndex)) { return false; } final long offset = calcElementOffset(producerIndex, mask); soElement(buffer, offset, e); // StoreStore soProducerIndex(producerIndex + 1); // ordered store -> atomic and ordered for size() return true; } private boolean offerSlowPath(final E[] buffer, final long mask, final long producerIndex) { final int lookAheadStep = this.lookAheadStep; if (null == lvElement(buffer, calcElementOffset(producerIndex + lookAheadStep, mask))) {// LoadLoad producerLimit = producerIndex + lookAheadStep; } else{ final long offset = calcElementOffset(producerIndex, mask); if (null != lvElement(buffer, offset)){ return false; } } return true; } /** * {@inheritDoc} * <p> * This implementation is correct for single consumer thread use only. */ @Override public E poll() { final long consumerIndex = this.consumerIndex; final long offset = calcElementOffset(consumerIndex); // local load of field to avoid repeated loads after volatile reads final E[] buffer = this.buffer; final E e = lvElement(buffer, offset);// LoadLoad if (null == e) { return null; } soElement(buffer, offset, null);// StoreStore soConsumerIndex(consumerIndex + 1); // ordered store -> atomic and ordered for size() return e; } /** * {@inheritDoc} * <p> * This implementation is correct for single consumer thread use only. */ @Override public E peek() { return UnsafeRefArrayAccess.lvElement(buffer, calcElementOffset(consumerIndex)); } private void soProducerIndex(long v) { UNSAFE.putOrderedLong(this, P_INDEX_OFFSET, v); } private void soConsumerIndex(long v) { UNSAFE.putOrderedLong(this, C_INDEX_OFFSET, v); } public final long lvProducerIndex() { return UNSAFE.getLongVolatile(this, P_INDEX_OFFSET); } public final long lvConsumerIndex() { return UNSAFE.getLongVolatile(this, C_INDEX_OFFSET); } @Override public boolean relaxedOffer(final E message) { return offer(message); } @Override public E relaxedPoll() { return poll(); } @Override public E relaxedPeek() { return peek(); } @Override public int drain(final Consumer<E> c) { return drain(c, capacity()); } @Override public int fill(final Supplier<E> s) { return fill(s, capacity()); } @Override public int drain(final Consumer<E> c, final int limit) { final E[] buffer = this.buffer; final long mask = this.mask; final long consumerIndex = this.consumerIndex; for (int i = 0; i < limit; i++) { final long index = consumerIndex + i; final long offset = calcElementOffset(index, mask); final E e = lvElement(buffer, offset);// LoadLoad if (null == e) { return i; } soElement(buffer, offset, null);// StoreStore soConsumerIndex(index + 1); // ordered store -> atomic and ordered for size() c.accept(e); } return limit; } @Override public int fill(final Supplier<E> s, final int limit) { final E[] buffer = this.buffer; final long mask = this.mask; final int lookAheadStep = this.lookAheadStep; final long producerIndex = this.producerIndex; for (int i = 0; i < limit; i++) { final long index = producerIndex + i; final long lookAheadElementOffset = calcElementOffset(index + lookAheadStep, mask); if (null == lvElement(buffer, lookAheadElementOffset)) {// LoadLoad int lookAheadLimit = Math.min(lookAheadStep, limit - i); for (int j = 0; j < lookAheadLimit; j++) { final long offset = calcElementOffset(index + j, mask); soElement(buffer, offset, s.get()); // StoreStore soProducerIndex(index + j + 1); // ordered store -> atomic and ordered for size() } i += lookAheadLimit - 1; } else { final long offset = calcElementOffset(index, mask); if (null != lvElement(buffer, offset)){ return i; } soElement(buffer, offset, s.get()); // StoreStore soProducerIndex(index + 1); // ordered store -> atomic and ordered for size() } } return limit; } @Override public void drain(final Consumer<E> c, final WaitStrategy w, final ExitCondition exit) { final E[] buffer = this.buffer; final long mask = this.mask; long consumerIndex = this.consumerIndex; int counter = 0; while (exit.keepRunning()) { for (int i = 0; i < 4096; i++) { final long offset = calcElementOffset(consumerIndex, mask); final E e = lvElement(buffer, offset);// LoadLoad if (null == e) { counter = w.idle(counter); continue; } consumerIndex++; counter = 0; soElement(buffer, offset, null);// StoreStore soConsumerIndex(consumerIndex); // ordered store -> atomic and ordered for size() c.accept(e); } } } @Override public void fill(final Supplier<E> s, final WaitStrategy w, final ExitCondition e) { final E[] buffer = this.buffer; final long mask = this.mask; final int lookAheadStep = this.lookAheadStep; long producerIndex = this.producerIndex; int counter = 0; while (e.keepRunning()) { final long lookAheadElementOffset = calcElementOffset(producerIndex + lookAheadStep, mask); if (null == lvElement(buffer, lookAheadElementOffset)) {// LoadLoad for (int j = 0; j < lookAheadStep; j++) { final long offset = calcElementOffset(producerIndex, mask); producerIndex++; soElement(buffer, offset, s.get()); // StoreStore soProducerIndex(producerIndex); // ordered store -> atomic and ordered for size() } } else { final long offset = calcElementOffset(producerIndex, mask); if (null != lvElement(buffer, offset)){// LoadLoad counter = w.idle(counter); continue; } producerIndex++; counter=0; soElement(buffer, offset, s.get()); // StoreStore soProducerIndex(producerIndex); // ordered store -> atomic and ordered for size() } } } }