package org.jctools.maps.nhbm_test; import java.util.AbstractSet; import java.util.Random; import java.util.Set; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.atomic.AtomicLong; import org.jctools.maps.NonBlockingHashSet; import org.jctools.maps.NonBlockingSetInt; /* * Written by Cliff Click and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain * Big Chunks of code shamelessly copied from Doug Lea's test harness which is also public domain. */ public class perf_set_test extends Thread { static int _read_ratio, _gr, _pr; static int _thread_min, _thread_max, _thread_incr; static int _table_size; static int KEYMAX = 1000; static Integer KEYS[]; static volatile boolean _start; static volatile boolean _stop; static final String _names[] = { "All", "CHMKeySet", "NBHashSet", "NBSetInt" }; static int check(String arg, String msg, int lower, int upper) { return check(Integer.parseInt(arg), msg, lower, upper); } static int check(int x, String msg, int lower, int upper) { if (x < lower || x > upper) throw new IllegalArgumentException(msg + " must be from " + lower + " to " + upper); return x; } public static void main(String args[]) { if (args.length == 0) { args = new String[] { "75", "2", "8", "2", "100000", "0" }; } // Parse args int impl; try { _read_ratio = check(args[0], "read%", 0, 100); _thread_min = check(args[1], "thread_min", 1, 100000); _thread_max = check(args[2], "thread_max", 1, 100000); _thread_incr = check(args[3], "thread_incr", 1, 100000); _table_size = check(args[4], "table_size", 1, 100000000); impl = check(args[5], "impl", 0, _names.length); _gr = (_read_ratio << 20) / 100; _pr = (((1 << 20) - _gr) >> 1) + _gr; int trips = (_thread_max - _thread_min) / _thread_incr; _thread_max = trips * _thread_incr + _thread_min; } catch (RuntimeException e) { System.out.print( "Usage: perf_set_test read%[0=churn test] thread-min thread-max thread-increment set_size impl["); for (String s : _names) System.out.print(s + ","); System.out.println("]"); throw e; } System.out.print(_read_ratio + "% gets, " + ((100 - _read_ratio) >> 1) + "% inserts, " + ((100 - _read_ratio) >> 1) + "% removes, " + "table_size=" + _table_size); if (_read_ratio == 0) System.out.print(" -- churn"); String name = _names[impl]; System.out.println(" " + name); System.out.println("Threads from " + _thread_min + " to " + _thread_max + " by " + _thread_incr); // Do some warmup. Make an array of Integers as Keys KEYMAX = 1; while (KEYMAX < _table_size) KEYMAX <<= 1; if (_read_ratio == 0) KEYMAX = 1024 * 1024; // The churn test uses a large key set KEYS = new Integer[KEYMAX]; for (int i = 0; i < KEYMAX; i++) KEYS[i] = i; System.out.println("Warmup -variance: "); run(Math.min(_thread_min, 2), 1, impl); // Now do the real thing System.out.print("==== Counter Threads Trial: "); int num_trials = 7; // Number of Trials for (int i = 0; i < num_trials; i++) System.out.printf(" %3d ", i); System.out.println(" Avg Stddev"); for (int i = _thread_min; i <= _thread_max; i += _thread_incr) run(i, num_trials, impl); } static void run(int num_threads, int num_trials, int impl) { if (impl == 0) { for (int i = 1; i < _names.length; i++) run_till_stable(num_threads, num_trials, i); } else { run_till_stable(num_threads, num_trials, impl); } } static void run_till_stable(int num_threads, int num_trials, int impl) { Set<Integer> AS; switch (impl) { case 1: AS = ConcurrentHashMap.newKeySet(); break; case 2: AS = new NonBlockingHashSet<Integer>(); break; case 3: AS = new NonBlockingSetInt(); break; default: throw new Error("unimplemented"); } System.out.printf("=== %10.10s %3d cnts/sec=", _names[impl], num_threads); // Quicky sanity check for (int i = 0; i < 100; i++) { AS.add(KEYS[i]); for (int j = 0; j < i; j++) { if (!AS.contains(KEYS[j])) { throw new Error("Broken table, put " + i + " but cannot find #" + j); } } } long[] trials = new long[num_trials]; // Number of trials long total = 0; for (int j = 0; j < trials.length; j++) { long[] ops = new long[num_threads]; long[] nanos = new long[num_threads]; long millis = run_once(num_threads, AS, ops, nanos); long sum = 0; for (int i = 0; i < num_threads; i++) sum += ops[i]; long ops_per_sec = (sum * 1000L) / millis; trials[j] = ops_per_sec; total += ops_per_sec; System.out.printf(" %10d", ops_per_sec); } if (trials.length > 2) { // Toss out low & high int lo = 0; int hi = 0; for (int j = 1; j < trials.length; j++) { if (trials[lo] < trials[j]) lo = j; if (trials[hi] > trials[j]) hi = j; } total -= (trials[lo] + trials[hi]); trials[lo] = trials[trials.length - 1]; trials[hi] = trials[trials.length - 2]; // Print avg,stddev long avg = total / (trials.length - 2); long stddev = compute_stddev(trials, trials.length - 2); long p = stddev * 100 / avg; // std-dev as a percent if (trials.length - 2 > 2) { // Toss out low & high lo = 0; hi = 0; for (int j = 1; j < trials.length - 2; j++) { if (trials[lo] < trials[j]) lo = j; if (trials[hi] > trials[j]) hi = j; } total -= (trials[lo] + trials[hi]); trials[lo] = trials[trials.length - 2 - 1]; trials[hi] = trials[trials.length - 2 - 2]; // Print avg,stddev avg = total / (trials.length - 2 - 2); stddev = compute_stddev(trials, trials.length - 2 - 2); p = stddev * 100 / avg; // std-dev as a percent } System.out.printf(" %10d", avg); System.out.printf(" (+/-%2d%%) %d", p, AS.size()); } System.out.println(); } static long compute_stddev(long[] trials, int len) { double sum = 0; double squ = 0.0; for (int i = 0; i < len; i++) { double d = (double) trials[i]; sum += d; squ += d * d; } double x = squ - sum * sum / len; double stddev = Math.sqrt(x / (len - 1)); return (long) stddev; } // Worker thread fields final int _tnum; final long[] _ops; final long[] _nanos; final Set<Integer> _set; public perf_set_test() { _tnum = 0; _ops = null; _nanos = null; _set = null; } perf_set_test(int tnum, Set set, long[] ops, long[] nanos) { _tnum = tnum; _set = set; _ops = ops; _nanos = nanos; } static long run_once(int num_threads, Set AS, long[] ops, long[] nanos) { Random R = new Random(); _start = false; _stop = false; // Fill the Set with data AS.add(0); AS.remove(0); int sz = AS.size(); while (sz + 1024 < _table_size) { int idx = R.nextInt(); for (int i = 0; i < 1024; i++) { int k = idx & (KEYMAX - 1); AS.add(k); idx++; } sz = AS.size(); } while (sz < ((_table_size >> 1) + (_table_size >> 3))) { int trip = 0; int idx = R.nextInt(); while (true) { int k = idx & (KEYMAX - 1); if (sz < _table_size) { if (AS.add(k)) { sz++; break; } } else { if (AS.remove(k)) { sz--; break; } } idx++; if ((trip & 15) == 15) idx = R.nextInt(); if (trip++ > 1024 * 1024) { if (trip > 1024 * 1024 + 100) throw new RuntimeException( "barf trip " + sz + " " + AS.size() + " numkeys=" + KEYMAX); System.out.println(k); } } } if (sz != AS.size()) { throw new Error("size does not match table contents sz=" + sz + " size()=" + AS.size()); } // Launch threads perf_set_test thrs[] = new perf_set_test[num_threads]; for (int i = 0; i < num_threads; i++) thrs[i] = new perf_set_test(i, AS, ops, nanos); for (int i = 0; i < num_threads; i++) thrs[i].start(); // Run threads long start = System.currentTimeMillis(); _start = true; try { Thread.sleep(2000); } catch (InterruptedException e) { /* empty */} // Stop and collect threads _stop = true; long stop = System.currentTimeMillis(); long millis = stop - start; for (int i = 0; i < num_threads; i++) try { thrs[i].join(); } catch (InterruptedException ie) { throw new RuntimeException(ie); } return millis; } // What a worker thread does public void run() { if (_read_ratio == 0) { if (_set instanceof NonBlockingSetInt) throw new Error("unimplemented"); else run_churn_int((AbstractSet<Integer>) _set); } else { if (_set instanceof NonBlockingSetInt) run_normal_prim((NonBlockingSetInt) _set); else run_normal_int((Set<Integer>) _set); } } // Force a large turnover of live keys, while keeping the total live-set // low. 10 keys kept alive per thread, out of a set of a million or so. // constantly churned, so we constantly need to 'cleanse' the table to flush // old entries. public void run_churn_int(Set<Integer> as) { int reprobe = System.identityHashCode(Thread.currentThread()); int idx = reprobe; while (!_start) // Spin till Time To Go try { Thread.sleep(1); } catch (Exception e) { /* empty */} long nano1 = System.nanoTime(); int get_ops = 0; int put_ops = 0; int del_ops = 0; while (!_stop) { // Insert a key 10 probes in the future, // remove a key 0 probes in the future, // Net result is the thread keeps 10 random keys in table int k1 = (idx + reprobe * 10) & (KEYMAX - 1); as.add(k1); put_ops++; // Remove a key 0 probes in the future int k2 = idx & (KEYMAX - 1); as.remove(k2); del_ops++; idx += reprobe; } // We stopped; report results into shared result structure long nano2 = System.nanoTime(); int total = get_ops + put_ops + del_ops; _ops[_tnum] = total; _nanos[_tnum] = (nano2 - nano1); } public void run_normal_prim(NonBlockingSetInt prim) { SimpleRandom R = new SimpleRandom(); while (!_start) // Spin till Time To Go try { Thread.sleep(1); } catch (Exception e) { /* empty */} long nano1 = System.nanoTime(); int get_ops = 0; int put_ops = 0; int del_ops = 0; while (!_stop) { int x = R.nextInt() & ((1 << 20) - 1); int k = R.nextInt() & (KEYMAX - 1); if (x < _gr) { get_ops++; prim.contains(k); } else if (x < _pr) { put_ops++; prim.add(k); } else { del_ops++; prim.remove(k); } } // We stopped; report results into shared result structure long nano2 = System.nanoTime(); int total = get_ops + put_ops + del_ops; _ops[_tnum] = total; _nanos[_tnum] = (nano2 - nano1); } public void run_normal_int(Set<Integer> as) { SimpleRandom R = new SimpleRandom(); while (!_start) // Spin till Time To Go try { Thread.sleep(1); } catch (Exception e) { /* empty */} long nano1 = System.nanoTime(); int get_ops = 0; int put_ops = 0; int del_ops = 0; while (!_stop) { int x = R.nextInt() & ((1 << 20) - 1); int k = R.nextInt() & (KEYMAX - 1); if (x < _gr) { get_ops++; as.contains(KEYS[k]); } else if (x < _pr) { put_ops++; as.add(KEYS[k]); } else { del_ops++; as.remove(KEYS[k]); } } // We stopped; report results into shared result structure long nano2 = System.nanoTime(); int total = get_ops + put_ops + del_ops; _ops[_tnum] = total; _nanos[_tnum] = (nano2 - nano1); } // Fairly fast random numbers static final class SimpleRandom { private final static long multiplier = 0x5DEECE66DL; private final static long addend = 0xBL; private final static long mask = (1L << 48) - 1; static final AtomicLong seq = new AtomicLong(-715159705); private long seed; SimpleRandom() { seed = System.nanoTime() + seq.getAndAdd(129); } public int nextInt() { return next(); } public int next() { long nextseed = (seed * multiplier + addend) & mask; seed = nextseed; return ((int) (nextseed >>> 17)) & 0x7FFFFFFF; } } }