/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.jctools.queues; import static org.jctools.queues.CircularArrayOffsetCalculator.allocate; import static org.jctools.util.UnsafeAccess.UNSAFE; import static org.jctools.util.UnsafeRefArrayAccess.REF_ARRAY_BASE; import static org.jctools.util.UnsafeRefArrayAccess.REF_ELEMENT_SHIFT; import static org.jctools.util.UnsafeRefArrayAccess.lvElement; import static org.jctools.util.UnsafeRefArrayAccess.soElement; import java.lang.reflect.Field; import java.util.AbstractQueue; import java.util.Iterator; import org.jctools.util.Pow2; import org.jctools.util.RangeUtil; abstract class BaseMpscLinkedArrayQueuePad1<E> extends AbstractQueue<E> { long p01, p02, p03, p04, p05, p06, p07; long p10, p11, p12, p13, p14, p15, p16, p17; } abstract class BaseMpscLinkedArrayQueueProducerFields<E> extends BaseMpscLinkedArrayQueuePad1<E> { protected long producerIndex; } abstract class BaseMpscLinkedArrayQueuePad2<E> extends BaseMpscLinkedArrayQueueProducerFields<E> { long p01, p02, p03, p04, p05, p06, p07; long p10, p11, p12, p13, p14, p15, p16, p17; } abstract class BaseMpscLinkedArrayQueueConsumerFields<E> extends BaseMpscLinkedArrayQueuePad2<E> { protected long consumerMask; protected E[] consumerBuffer; protected long consumerIndex; } abstract class BaseMpscLinkedArrayQueuePad3<E> extends BaseMpscLinkedArrayQueueConsumerFields<E> { long p0, p1, p2, p3, p4, p5, p6, p7; long p10, p11, p12, p13, p14, p15, p16, p17; } abstract class BaseMpscLinkedArrayQueueColdProducerFields<E> extends BaseMpscLinkedArrayQueuePad3<E> { protected volatile long producerLimit; protected long producerMask; protected E[] producerBuffer; } /** * An MPSC array queue which starts at <i>initialCapacity</i> and grows to <i>maxCapacity</i> in linked chunks * of the initial size. The queue grows only when the current buffer is full and elements are not copied on * resize, instead a link to the new buffer is stored in the old buffer for the consumer to follow.<br> * * @param <E> */ public abstract class BaseMpscLinkedArrayQueue<E> extends BaseMpscLinkedArrayQueueColdProducerFields<E> implements MessagePassingQueue<E>, QueueProgressIndicators { // No post padding here, subclasses must add private final static long P_INDEX_OFFSET; private final static long C_INDEX_OFFSET; private final static long P_LIMIT_OFFSET; static { try { Field iField = BaseMpscLinkedArrayQueueProducerFields.class.getDeclaredField("producerIndex"); P_INDEX_OFFSET = UNSAFE.objectFieldOffset(iField); } catch (NoSuchFieldException e) { throw new RuntimeException(e); } try { Field iField = BaseMpscLinkedArrayQueueConsumerFields.class.getDeclaredField("consumerIndex"); C_INDEX_OFFSET = UNSAFE.objectFieldOffset(iField); } catch (NoSuchFieldException e) { throw new RuntimeException(e); } try { Field iField = BaseMpscLinkedArrayQueueColdProducerFields.class.getDeclaredField("producerLimit"); P_LIMIT_OFFSET = UNSAFE.objectFieldOffset(iField); } catch (NoSuchFieldException e) { throw new RuntimeException(e); } } private final static Object JUMP = new Object(); /** * @param initialCapacity the queue initial capacity. If chunk size is fixed this will be the chunk size. * Must be 2 or more. */ public BaseMpscLinkedArrayQueue(final int initialCapacity) { RangeUtil.checkGreaterThanOrEqual(initialCapacity, 2, "initialCapacity"); int p2capacity = Pow2.roundToPowerOfTwo(initialCapacity); // leave lower bit of mask clear long mask = (p2capacity - 1) << 1; // need extra element to point at next array E[] buffer = allocate(p2capacity + 1); producerBuffer = buffer; producerMask = mask; consumerBuffer = buffer; consumerMask = mask; soProducerLimit(mask); // we know it's all empty to start with } @Override public final Iterator<E> iterator() { throw new UnsupportedOperationException(); } @Override public String toString() { return this.getClass().getName(); } @Override public boolean offer(final E e) { if (null == e) { throw new NullPointerException(); } long mask; E[] buffer; long pIndex; while (true) { long producerLimit = lvProducerLimit(); pIndex = lvProducerIndex(); // lower bit is indicative of resize, if we see it we spin until it's cleared if ((pIndex & 1) == 1) { continue; } // pIndex is even (lower bit is 0) -> actual index is (pIndex >> 1) // mask/buffer may get changed by resizing -> only use for array access after successful CAS. mask = this.producerMask; buffer = this.producerBuffer; // a successful CAS ties the ordering, lv(pIndex)-[mask/buffer]->cas(pIndex) // assumption behind this optimization is that queue is almost always empty or near empty if (producerLimit <= pIndex) { int result = offerSlowPath(mask, pIndex, producerLimit); switch (result) { case 0: break; case 1: continue; case 2: return false; case 3: resize(mask, buffer, pIndex, e); return true; } } if (casProducerIndex(pIndex, pIndex + 2)) { break; } } // INDEX visible before ELEMENT, consistent with consumer expectation final long offset = modifiedCalcElementOffset(pIndex, mask); soElement(buffer, offset, e); return true; } /** * We do not inline resize into this method because we do not resize on fill. */ private int offerSlowPath(long mask, long pIndex, long producerLimit) { int result; final long cIndex = lvConsumerIndex(); long bufferCapacity = getCurrentBufferCapacity(mask); result = 0;// 0 - goto pIndex CAS if (cIndex + bufferCapacity > pIndex) { if (!casProducerLimit(producerLimit, cIndex + bufferCapacity)) { result = 1;// retry from top } } // full and cannot grow else if (availableInQueue(pIndex, cIndex) <= 0) { result = 2;// -> return false; } // grab index for resize -> set lower bit else if (casProducerIndex(pIndex, pIndex + 1)) { result = 3;// -> resize } else { result = 1;// failed resize attempt, retry from top } return result; } /** * @return available elements in queue * 2 */ protected abstract long availableInQueue(long pIndex, final long cIndex); /** * This method assumes index is actually (index << 1) because lower bit is used for resize. This is * compensated for by reducing the element shift. The computation is constant folded, so there's no cost. */ private static long modifiedCalcElementOffset(long index, long mask) { return REF_ARRAY_BASE + ((index & mask) << (REF_ELEMENT_SHIFT - 1)); } /** * {@inheritDoc} * <p> * This implementation is correct for single consumer thread use only. */ @SuppressWarnings("unchecked") @Override public E poll() { final E[] buffer = consumerBuffer; final long index = consumerIndex; final long mask = consumerMask; final long offset = modifiedCalcElementOffset(index, mask); Object e = lvElement(buffer, offset);// LoadLoad if (e == null) { if (index != lvProducerIndex()) { // poll() == null iff queue is empty, null element is not strong enough indicator, so we must // check the producer index. If the queue is indeed not empty we spin until element is // visible. do { e = lvElement(buffer, offset); } while (e == null); } else { return null; } } if (e == JUMP) { final E[] nextBuffer = getNextBuffer(buffer, mask); return newBufferPoll(nextBuffer, index); } soElement(buffer, offset, null); soConsumerIndex(index + 2); return (E) e; } /** * {@inheritDoc} * <p> * This implementation is correct for single consumer thread use only. */ @SuppressWarnings("unchecked") @Override public E peek() { final E[] buffer = consumerBuffer; final long index = consumerIndex; final long mask = consumerMask; final long offset = modifiedCalcElementOffset(index, mask); Object e = lvElement(buffer, offset);// LoadLoad if (e == null && index != lvProducerIndex()) { // peek() == null iff queue is empty, null element is not strong enough indicator, so we must // check the producer index. If the queue is indeed not empty we spin until element is visible. while ((e = lvElement(buffer, offset)) == null) ; } if (e == JUMP) { return newBufferPeek(getNextBuffer(buffer, mask), index); } return (E) e; } @SuppressWarnings("unchecked") private E[] getNextBuffer(final E[] buffer, final long mask) { final long nextArrayOffset = nextArrayOffset(mask); final E[] nextBuffer = (E[]) lvElement(buffer, nextArrayOffset); soElement(buffer, nextArrayOffset, null); return nextBuffer; } private long nextArrayOffset(final long mask) { return modifiedCalcElementOffset(mask + 2, Long.MAX_VALUE); } private E newBufferPoll(E[] nextBuffer, final long index) { final long offsetInNew = newBufferAndOffset(nextBuffer, index); final E n = lvElement(nextBuffer, offsetInNew);// LoadLoad if (n == null) { throw new IllegalStateException("new buffer must have at least one element"); } soElement(nextBuffer, offsetInNew, null);// StoreStore soConsumerIndex(index + 2); return n; } private E newBufferPeek(E[] nextBuffer, final long index) { final long offsetInNew = newBufferAndOffset(nextBuffer, index); final E n = lvElement(nextBuffer, offsetInNew);// LoadLoad if (null == n) { throw new IllegalStateException("new buffer must have at least one element"); } return n; } private long newBufferAndOffset(E[] nextBuffer, final long index) { consumerBuffer = nextBuffer; consumerMask = (nextBuffer.length - 2) << 1; final long offsetInNew = modifiedCalcElementOffset(index, consumerMask); return offsetInNew; } @Override public final int size() { // NOTE: because indices are on even numbers we cannot use the size util. /* * It is possible for a thread to be interrupted or reschedule between the read of the producer and * consumer indices, therefore protection is required to ensure size is within valid range. In the * event of concurrent polls/offers to this method the size is OVER estimated as we read consumer * index BEFORE the producer index. */ long after = lvConsumerIndex(); long size; while (true) { final long before = after; final long currentProducerIndex = lvProducerIndex(); after = lvConsumerIndex(); if (before == after) { size = ((currentProducerIndex - after) >> 1); break; } } // Long overflow is impossible, so size is always positive. Integer overflow is possible for the unbounded // indexed queues. if (size > Integer.MAX_VALUE) { return Integer.MAX_VALUE; } else { return (int) size; } } @Override public final boolean isEmpty() { // Order matters! // Loading consumer before producer allows for producer increments after consumer index is read. // This ensures this method is conservative in it's estimate. Note that as this is an MPMC there is // nothing we can do to make this an exact method. return (this.lvConsumerIndex() == this.lvProducerIndex()); } private long lvProducerIndex() { return UNSAFE.getLongVolatile(this, P_INDEX_OFFSET); } private long lvConsumerIndex() { return UNSAFE.getLongVolatile(this, C_INDEX_OFFSET); } private void soProducerIndex(long v) { UNSAFE.putOrderedLong(this, P_INDEX_OFFSET, v); } private boolean casProducerIndex(long expect, long newValue) { return UNSAFE.compareAndSwapLong(this, P_INDEX_OFFSET, expect, newValue); } private void soConsumerIndex(long v) { UNSAFE.putOrderedLong(this, C_INDEX_OFFSET, v); } private long lvProducerLimit() { return producerLimit; } private boolean casProducerLimit(long expect, long newValue) { return UNSAFE.compareAndSwapLong(this, P_LIMIT_OFFSET, expect, newValue); } private void soProducerLimit(long v) { UNSAFE.putOrderedLong(this, P_LIMIT_OFFSET, v); } @Override public long currentProducerIndex() { return lvProducerIndex() / 2; } @Override public long currentConsumerIndex() { return lvConsumerIndex() / 2; } @Override public abstract int capacity(); @Override public boolean relaxedOffer(E e) { return offer(e); } @SuppressWarnings("unchecked") @Override public E relaxedPoll() { final E[] buffer = consumerBuffer; final long index = consumerIndex; final long mask = consumerMask; final long offset = modifiedCalcElementOffset(index, mask); Object e = lvElement(buffer, offset);// LoadLoad if (e == null) { return null; } if (e == JUMP) { final E[] nextBuffer = getNextBuffer(buffer, mask); return newBufferPoll(nextBuffer, index); } soElement(buffer, offset, null); soConsumerIndex(index + 2); return (E) e; } @SuppressWarnings("unchecked") @Override public E relaxedPeek() { final E[] buffer = consumerBuffer; final long index = consumerIndex; final long mask = consumerMask; final long offset = modifiedCalcElementOffset(index, mask); Object e = lvElement(buffer, offset);// LoadLoad if (e == JUMP) { return newBufferPeek(getNextBuffer(buffer, mask), index); } return (E) e; } @Override public int fill(Supplier<E> s, int batchSize) { long mask; E[] buffer; long pIndex; int claimedSlots; while (true) { long producerLimit = lvProducerLimit(); pIndex = lvProducerIndex(); // lower bit is indicative of resize, if we see it we spin until it's cleared if ((pIndex & 1) == 1) { continue; } // pIndex is even (lower bit is 0) -> actual index is (pIndex >> 1) // NOTE: mask/buffer may get changed by resizing -> only use for array access after successful CAS. // Only by virtue ofloading them between the lvProcducerIndex and a successful casProducerIndex are they // safe to use. mask = this.producerMask; buffer = this.producerBuffer; // a successful CAS ties the ordering, lv(pIndex)->[mask/buffer]->cas(pIndex) // we want 'limit' slots, but will settle for whatever is visible to 'producerLimit' long batchIndex = Math.min(producerLimit, pIndex + 2 * batchSize); if (pIndex == producerLimit || producerLimit < batchIndex) { int result = offerSlowPath(mask, pIndex, producerLimit); switch (result) { case 1: continue; case 2: return 0; case 3: resize(mask, buffer, pIndex, s.get()); return 1; } } // claim limit slots at once if (casProducerIndex(pIndex, batchIndex)) { claimedSlots = (int) ((batchIndex - pIndex) / 2); break; } } int i = 0; for (i = 0; i < claimedSlots; i++) { final long offset = modifiedCalcElementOffset(pIndex + 2 * i, mask); soElement(buffer, offset, s.get()); } return claimedSlots; } private void resize(long oldMask, E[] oldBuffer, long pIndex, final E e) { int newBufferLength = getNextBufferSize(oldBuffer); final E[] newBuffer = allocate(newBufferLength); producerBuffer = newBuffer; final int newMask = (newBufferLength - 2) << 1; producerMask = newMask; final long offsetInOld = modifiedCalcElementOffset(pIndex, oldMask); final long offsetInNew = modifiedCalcElementOffset(pIndex, newMask); soElement(newBuffer, offsetInNew, e);// element in new array soElement(oldBuffer, nextArrayOffset(oldMask), newBuffer);// buffer linked // ASSERT code final long cIndex = lvConsumerIndex(); final long availableInQueue = availableInQueue(pIndex, cIndex); RangeUtil.checkPositive(availableInQueue, "availableInQueue"); // Invalidate racing CASs // We never set the limit beyond the bounds of a buffer soProducerLimit(pIndex + Math.min(newMask, availableInQueue)); // make resize visible to the other producers soProducerIndex(pIndex + 2); // INDEX visible before ELEMENT, consistent with consumer expectation // make resize visible to consumer soElement(oldBuffer, offsetInOld, JUMP); } /** * @return next buffer size(inclusive of next array pointer) */ protected abstract int getNextBufferSize(E[] buffer); /** * @return current buffer capacity for elements (excluding next pointer and jump entry) * 2 */ protected abstract long getCurrentBufferCapacity(long mask); @Override public int fill(Supplier<E> s) { long result = 0;// result is a long because we want to have a safepoint check at regular intervals final int capacity = capacity(); do { final int filled = fill(s, MpmcArrayQueue.RECOMENDED_OFFER_BATCH); if (filled == 0) { return (int) result; } result += filled; } while (result <= capacity); return (int) result; } @Override public void fill(Supplier<E> s, WaitStrategy w, ExitCondition exit) { while (exit.keepRunning()) { while (fill(s, MpmcArrayQueue.RECOMENDED_OFFER_BATCH) != 0 && exit.keepRunning()) { continue; } int idleCounter = 0; while (exit.keepRunning() && fill(s, MpmcArrayQueue.RECOMENDED_OFFER_BATCH) == 0) { idleCounter = w.idle(idleCounter); } } } @Override public void drain(Consumer<E> c, WaitStrategy w, ExitCondition exit) { int idleCounter = 0; while (exit.keepRunning()) { E e = relaxedPoll(); if (e == null) { idleCounter = w.idle(idleCounter); continue; } idleCounter = 0; c.accept(e); } } @Override public int drain(Consumer<E> c) { return drain(c, capacity()); } @Override public int drain(final Consumer<E> c, final int limit) { /** * Impl note: there are potentially some small gains to be had by manually inlining relaxedPoll() and hoisting * reused fields out to reduce redundant reads. */ int i = 0; E m; for (; i < limit && (m = relaxedPoll()) != null; i++) { c.accept(m); } return i; } }