/******************************************************************************* * This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/epl-v10.html. * * This file is a derivative of code released by the University of * California under the terms listed below. * * Refinement Analysis Tools is Copyright (c) 2007 The Regents of the * University of California (Regents). Provided that this notice and * the following two paragraphs are included in any distribution of * Refinement Analysis Tools or its derivative work, Regents agrees * not to assert any of Regents' copyright rights in Refinement * Analysis Tools against recipient for recipient's reproduction, * preparation of derivative works, public display, public * performance, distribution or sublicensing of Refinement Analysis * Tools and derivative works, in source code and object code form. * This agreement not to assert does not confer, by implication, * estoppel, or otherwise any license or rights in any intellectual * property of Regents, including, but not limited to, any patents * of Regents or Regents' employees. * * IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, * INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, * INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE * AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE AND FURTHER DISCLAIMS ANY STATUTORY * WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE AND ACCOMPANYING * DOCUMENTATION, IF ANY, PROVIDED HEREUNDER IS PROVIDED "AS * IS". REGENTS HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, * UPDATES, ENHANCEMENTS, OR MODIFICATIONS. */ package com.ibm.wala.demandpa.flowgraph; import java.util.ArrayList; import java.util.Collection; import java.util.Collections; import java.util.Iterator; import java.util.List; import java.util.Map; import java.util.Set; import com.ibm.wala.classLoader.CallSiteReference; import com.ibm.wala.classLoader.IClass; import com.ibm.wala.classLoader.IField; import com.ibm.wala.classLoader.ProgramCounter; import com.ibm.wala.demandpa.flowgraph.DemandPointerFlowGraph.NewMultiDimInfo; import com.ibm.wala.demandpa.flowgraph.IFlowLabel.IFlowLabelVisitor; import com.ibm.wala.demandpa.util.ArrayContents; import com.ibm.wala.demandpa.util.MemoryAccess; import com.ibm.wala.demandpa.util.MemoryAccessMap; import com.ibm.wala.ipa.callgraph.CGNode; import com.ibm.wala.ipa.callgraph.CallGraph; import com.ibm.wala.ipa.callgraph.propagation.ArrayContentsKey; import com.ibm.wala.ipa.callgraph.propagation.ConcreteTypeKey; import com.ibm.wala.ipa.callgraph.propagation.HeapModel; import com.ibm.wala.ipa.callgraph.propagation.InstanceKey; import com.ibm.wala.ipa.callgraph.propagation.LocalPointerKey; import com.ibm.wala.ipa.callgraph.propagation.NormalAllocationInNode; import com.ibm.wala.ipa.callgraph.propagation.PointerKey; import com.ibm.wala.ipa.callgraph.propagation.PropagationCallGraphBuilder; import com.ibm.wala.ipa.callgraph.propagation.ReturnValueKey; import com.ibm.wala.ipa.callgraph.propagation.SSAPropagationCallGraphBuilder; import com.ibm.wala.ipa.callgraph.propagation.StaticFieldKey; import com.ibm.wala.ipa.cha.IClassHierarchy; import com.ibm.wala.ssa.IR; import com.ibm.wala.ssa.SSAAbstractInvokeInstruction; import com.ibm.wala.ssa.SSAAbstractThrowInstruction; import com.ibm.wala.ssa.SSAArrayLoadInstruction; import com.ibm.wala.ssa.SSAArrayStoreInstruction; import com.ibm.wala.ssa.SSAGetInstruction; import com.ibm.wala.ssa.SSAInstruction; import com.ibm.wala.ssa.SSANewInstruction; import com.ibm.wala.ssa.SSAPutInstruction; import com.ibm.wala.ssa.SymbolTable; import com.ibm.wala.types.TypeReference; import com.ibm.wala.util.collections.EmptyIterator; import com.ibm.wala.util.collections.HashMapFactory; import com.ibm.wala.util.collections.MapUtil; import com.ibm.wala.util.collections.Pair; import com.ibm.wala.util.debug.Assertions; import com.ibm.wala.util.graph.labeled.SlowSparseNumberedLabeledGraph; /** * A graph whose edges are labeled with {@link IFlowLabel}s. * * @author Manu Sridharan * */ public abstract class AbstractFlowGraph extends SlowSparseNumberedLabeledGraph<Object, IFlowLabel> implements IFlowGraph { private final static IFlowLabel defaultLabel = new IFlowLabel() { @Override public IFlowLabel bar() { return defaultLabel; } @Override public boolean isBarred() { return false; } @Override public void visit(IFlowLabelVisitor v, Object dst) { } }; /** * Map: LocalPointerKey -> SSAInvokeInstruction. If we have (x, foo()), that means that x was def'fed by the return value from the * call to foo() */ protected final Map<PointerKey, SSAAbstractInvokeInstruction> callDefs = HashMapFactory.make(); /** * Map: {@link LocalPointerKey} -> Set<{@link SSAInvokeInstruction}>. If we have (x, foo()), that means x was passed as a * parameter to the call to foo(). The parameter position is not represented and must be recovered. */ protected final Map<PointerKey, Set<SSAAbstractInvokeInstruction>> callParams = HashMapFactory.make(); /** * Map: LocalPointerKey -> CGNode. If we have (x, foo), then x is a parameter of method foo. For now, we have to re-discover the * parameter position. TODO this should just be a set; we can get the CGNode from the {@link LocalPointerKey} */ protected final Map<PointerKey, CGNode> params = HashMapFactory.make(); /** * Map: {@link LocalPointerKey} -> {@link CGNode}. If we have (x, foo), then x is a return value of method foo. Must re-discover * if x is normal or exceptional return value. */ protected final Map<PointerKey, CGNode> returns = HashMapFactory.make(); protected final MemoryAccessMap mam; protected final HeapModel heapModel; protected final IClassHierarchy cha; protected final CallGraph cg; public AbstractFlowGraph(MemoryAccessMap mam, HeapModel heapModel, IClassHierarchy cha, CallGraph cg) { super(defaultLabel); this.mam = mam; this.heapModel = heapModel; this.cha = cha; this.cg = cg; } /* * @see com.ibm.wala.demandpa.flowgraph.IFlowLabelGraph#visitSuccs(java.lang.Object, * com.ibm.wala.demandpa.flowgraph.IFlowLabel.IFlowLabelVisitor) */ @Override public void visitSuccs(Object node, IFlowLabelVisitor v) { for (Iterator<? extends IFlowLabel> succLabelIter = getSuccLabels(node); succLabelIter.hasNext();) { final IFlowLabel label = succLabelIter.next(); for (Iterator<? extends Object> succNodeIter = getSuccNodes(node, label); succNodeIter.hasNext();) { label.visit(v, succNodeIter.next()); } } } /* * @see com.ibm.wala.demandpa.flowgraph.IFlowLabelGraph#visitPreds(java.lang.Object, * com.ibm.wala.demandpa.flowgraph.IFlowLabel.IFlowLabelVisitor) */ @Override public void visitPreds(Object node, IFlowLabelVisitor v) { for (Iterator<? extends IFlowLabel> predLabelIter = getPredLabels(node); predLabelIter.hasNext();) { final IFlowLabel label = predLabelIter.next(); for (Iterator<? extends Object> predNodeIter = getPredNodes(node, label); predNodeIter.hasNext();) { label.visit(v, predNodeIter.next()); } } } /** * For each invocation in the method, add nodes for actual parameters and return values * * @param node */ protected void addNodesForInvocations(CGNode node, IR ir) { for (Iterator<CallSiteReference> iter = ir.iterateCallSites(); iter.hasNext();) { CallSiteReference site = iter.next(); SSAAbstractInvokeInstruction[] calls = ir.getCalls(site); for (SSAAbstractInvokeInstruction invokeInstr : calls) { for (int i = 0; i < invokeInstr.getNumberOfUses(); i++) { // just make nodes for parameters; we'll get to them when // traversing // from the callee PointerKey use = heapModel.getPointerKeyForLocal(node, invokeInstr.getUse(i)); addNode(use); Set<SSAAbstractInvokeInstruction> s = MapUtil.findOrCreateSet(callParams, use); s.add(invokeInstr); } // for any def'd values, keep track of the fact that they are def'd // by a call if (invokeInstr.hasDef()) { PointerKey def = heapModel.getPointerKeyForLocal(node, invokeInstr.getDef()); addNode(def); callDefs.put(def, invokeInstr); } PointerKey exc = heapModel.getPointerKeyForLocal(node, invokeInstr.getException()); addNode(exc); callDefs.put(exc, invokeInstr); } } } @Override public boolean isParam(LocalPointerKey pk) { return params.get(pk) != null; } @Override public Iterator<SSAAbstractInvokeInstruction> getInstrsPassingParam(LocalPointerKey pk) { Set<SSAAbstractInvokeInstruction> instrs = callParams.get(pk); if (instrs == null) { return EmptyIterator.instance(); } else { return instrs.iterator(); } } @Override public SSAAbstractInvokeInstruction getInstrReturningTo(LocalPointerKey pk) { return callDefs.get(pk); } @Override public Iterator<? extends Object> getWritesToStaticField(StaticFieldKey sfk) throws IllegalArgumentException { if (sfk == null) { throw new IllegalArgumentException("sfk == null"); } Collection<MemoryAccess> fieldWrites = mam.getStaticFieldWrites(sfk.getField()); for (MemoryAccess a : fieldWrites) { addSubgraphForNode(a.getNode()); } return getSuccNodes(sfk, AssignGlobalLabel.v()); } @Override public Iterator<? extends Object> getReadsOfStaticField(StaticFieldKey sfk) throws IllegalArgumentException { if (sfk == null) { throw new IllegalArgumentException("sfk == null"); } Collection<MemoryAccess> fieldReads = mam.getStaticFieldReads(sfk.getField()); for (MemoryAccess a : fieldReads) { addSubgraphForNode(a.getNode()); } return getPredNodes(sfk, AssignGlobalLabel.v()); } @Override public Iterator<PointerKey> getWritesToInstanceField(PointerKey pk, IField f) { // TODO: cache this!! if (f == ArrayContents.v()) { return getArrayWrites(pk); } pk = convertPointerKeyToHeapModel(pk, mam.getHeapModel()); Collection<MemoryAccess> writes = mam.getFieldWrites(pk, f); for (MemoryAccess a : writes) { addSubgraphForNode(a.getNode()); } ArrayList<PointerKey> written = new ArrayList<PointerKey>(); for (MemoryAccess a : writes) { IR ir = a.getNode().getIR(); SSAPutInstruction s = (SSAPutInstruction) ir.getInstructions()[a.getInstructionIndex()]; if (s == null) { // s can be null because the memory access map may be constructed from bytecode, // and the write instruction may have been eliminated from SSA because it's dead // TODO clean this up continue; } PointerKey r = heapModel.getPointerKeyForLocal(a.getNode(), s.getVal()); // if (Assertions.verifyAssertions) { // Assertions._assert(containsNode(r)); // } written.add(r); } return written.iterator(); } /** * convert a pointer key to one in the memory access map's heap model * * TODO move this somewhere more appropriate * * @throws UnsupportedOperationException if it doesn't know how to handle a {@link PointerKey} */ public static PointerKey convertPointerKeyToHeapModel(PointerKey pk, HeapModel h) { if (pk == null) { throw new IllegalArgumentException("null pk"); } if (pk instanceof LocalPointerKey) { LocalPointerKey lpk = (LocalPointerKey) pk; return h.getPointerKeyForLocal(lpk.getNode(), lpk.getValueNumber()); } else if (pk instanceof ArrayContentsKey) { ArrayContentsKey ack = (ArrayContentsKey) pk; InstanceKey ik = ack.getInstanceKey(); if (ik instanceof NormalAllocationInNode) { NormalAllocationInNode nain = (NormalAllocationInNode) ik; ik = h.getInstanceKeyForAllocation(nain.getNode(), nain.getSite()); } else { assert false : "need to handle " + ik.getClass(); } return h.getPointerKeyForArrayContents(ik); } else if (pk instanceof ReturnValueKey) { ReturnValueKey rvk = (ReturnValueKey) pk; return h.getPointerKeyForReturnValue(rvk.getNode()); } throw new UnsupportedOperationException("need to handle " + pk.getClass()); } @Override public Iterator<PointerKey> getReadsOfInstanceField(PointerKey pk, IField f) { // TODO: cache this!! if (f == ArrayContents.v()) { return getArrayReads(pk); } pk = convertPointerKeyToHeapModel(pk, mam.getHeapModel()); Collection<MemoryAccess> reads = mam.getFieldReads(pk, f); for (MemoryAccess a : reads) { addSubgraphForNode(a.getNode()); } ArrayList<PointerKey> readInto = new ArrayList<PointerKey>(); for (MemoryAccess a : reads) { IR ir = a.getNode().getIR(); SSAGetInstruction s = (SSAGetInstruction) ir.getInstructions()[a.getInstructionIndex()]; if (s == null) { // actually dead code continue; } PointerKey r = heapModel.getPointerKeyForLocal(a.getNode(), s.getDef()); // if (Assertions.verifyAssertions) { // Assertions._assert(containsNode(r)); // } readInto.add(r); } return readInto.iterator(); } Iterator<PointerKey> getArrayWrites(PointerKey arrayRef) { arrayRef = convertPointerKeyToHeapModel(arrayRef, mam.getHeapModel()); Collection<MemoryAccess> arrayWrites = mam.getArrayWrites(arrayRef); for (MemoryAccess a : arrayWrites) { addSubgraphForNode(a.getNode()); } ArrayList<PointerKey> written = new ArrayList<PointerKey>(); for (MemoryAccess a : arrayWrites) { final CGNode node = a.getNode(); IR ir = node.getIR(); SSAInstruction instruction = ir.getInstructions()[a.getInstructionIndex()]; if (instruction == null) { // this means the array store found was in fact dead code // TODO detect this earlier and don't keep it in the MemoryAccessMap continue; } if (instruction instanceof SSAArrayStoreInstruction) { SSAArrayStoreInstruction s = (SSAArrayStoreInstruction) instruction; PointerKey r = heapModel.getPointerKeyForLocal(node, s.getValue()); written.add(r); } else if (instruction instanceof SSANewInstruction) { NewMultiDimInfo multiDimInfo = DemandPointerFlowGraph.getInfoForNewMultiDim((SSANewInstruction) instruction, heapModel, node); for (Pair<PointerKey, PointerKey> arrStoreInstr : multiDimInfo.arrStoreInstrs) { written.add(arrStoreInstr.snd); } } else { Assertions.UNREACHABLE(); } } return written.iterator(); } protected Iterator<PointerKey> getArrayReads(PointerKey arrayRef) { arrayRef = convertPointerKeyToHeapModel(arrayRef, mam.getHeapModel()); Collection<MemoryAccess> arrayReads = mam.getArrayReads(arrayRef); for (Iterator<MemoryAccess> it = arrayReads.iterator(); it.hasNext();) { MemoryAccess a = it.next(); addSubgraphForNode(a.getNode()); } ArrayList<PointerKey> read = new ArrayList<PointerKey>(); for (Iterator<MemoryAccess> it = arrayReads.iterator(); it.hasNext();) { MemoryAccess a = it.next(); IR ir = a.getNode().getIR(); SSAArrayLoadInstruction s = (SSAArrayLoadInstruction) ir.getInstructions()[a.getInstructionIndex()]; if (s == null) { // actually dead code continue; } PointerKey r = heapModel.getPointerKeyForLocal(a.getNode(), s.getDef()); // if (Assertions.verifyAssertions) { // Assertions._assert(containsNode(r)); // } read.add(r); } return read.iterator(); } /** * Add constraints to represent the flow of exceptions to the exceptional return value for this node */ protected void addNodePassthruExceptionConstraints(CGNode node, IR ir) { // add constraints relating to thrown exceptions that reach the exit // block. List<ProgramCounter> peis = SSAPropagationCallGraphBuilder.getIncomingPEIs(ir, ir.getExitBlock()); PointerKey exception = heapModel.getPointerKeyForExceptionalReturnValue(node); IClass c = node.getClassHierarchy().lookupClass(TypeReference.JavaLangThrowable); addExceptionDefConstraints(ir, node, peis, exception, Collections.singleton(c)); } /** * Generate constraints which assign exception values into an exception pointer * * @param node governing node * @param peis list of PEI instructions * @param exceptionVar PointerKey representing a pointer to an exception value * @param catchClasses the types "caught" by the exceptionVar */ protected void addExceptionDefConstraints(IR ir, CGNode node, List<ProgramCounter> peis, PointerKey exceptionVar, Set<IClass> catchClasses) { for (Iterator<ProgramCounter> it = peis.iterator(); it.hasNext();) { ProgramCounter peiLoc = it.next(); SSAInstruction pei = ir.getPEI(peiLoc); if (pei instanceof SSAAbstractInvokeInstruction) { SSAAbstractInvokeInstruction s = (SSAAbstractInvokeInstruction) pei; PointerKey e = heapModel.getPointerKeyForLocal(node, s.getException()); addNode(exceptionVar); addNode(e); addEdge(exceptionVar, e, AssignLabel.noFilter()); } else if (pei instanceof SSAAbstractThrowInstruction) { SSAAbstractThrowInstruction s = (SSAAbstractThrowInstruction) pei; PointerKey e = heapModel.getPointerKeyForLocal(node, s.getException()); addNode(exceptionVar); addNode(e); addEdge(exceptionVar, e, AssignLabel.noFilter()); } // Account for those exceptions for which we do not actually have a // points-to set for // the pei, but just instance keys Collection<TypeReference> types = pei.getExceptionTypes(); if (types != null) { for (Iterator<TypeReference> it2 = types.iterator(); it2.hasNext();) { TypeReference type = it2.next(); if (type != null) { InstanceKey ik = heapModel.getInstanceKeyForPEI(node, peiLoc, type); if (ik == null) { // ugh. hope someone somewhere else knows what they are doing. // this is probably due to analysis scope exclusions. continue; } if (!(ik instanceof ConcreteTypeKey)) { assert ik instanceof ConcreteTypeKey : "uh oh: need to implement getCaughtException constraints for instance " + ik; } ConcreteTypeKey ck = (ConcreteTypeKey) ik; IClass klass = ck.getType(); if (PropagationCallGraphBuilder.catches(catchClasses, klass, cha)) { addNode(exceptionVar); addNode(ik); addEdge(exceptionVar, ik, NewLabel.v()); } } } } } } /** * add constraints for reference constants assigned to vars */ protected void addNodeConstantConstraints(CGNode node, IR ir) { SymbolTable symbolTable = ir.getSymbolTable(); for (int i = 1; i <= symbolTable.getMaxValueNumber(); i++) { if (symbolTable.isConstant(i)) { Object v = symbolTable.getConstantValue(i); if (!(v instanceof Number)) { Object S = symbolTable.getConstantValue(i); TypeReference type = node.getMethod().getDeclaringClass().getClassLoader().getLanguage().getConstantType(S); if (type != null) { InstanceKey ik = heapModel.getInstanceKeyForConstant(type, S); if (ik != null) { PointerKey pk = heapModel.getPointerKeyForLocal(node, i); addNode(pk); addNode(ik); addEdge(pk, ik, NewLabel.v()); } } } } } } }