/* * Copyright (C) 2008-2015 by Holger Arndt * * This file is part of the Universal Java Matrix Package (UJMP). * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * UJMP is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * UJMP is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with UJMP; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package org.ujmp.examples; import org.ujmp.core.DenseMatrix; import org.ujmp.core.Matrix; import org.ujmp.core.SparseMatrix; public class QuickStart { public static void main(String[] args) throws Exception { // create a dense empty matrix with 4 rows and 4 columns Matrix dense = DenseMatrix.Factory.zeros(4, 4); // set entry at row 2 and column 3 to the value 5.0 dense.setAsDouble(5.0, 2, 3); // set some other values dense.setAsDouble(1.0, 0, 0); dense.setAsDouble(3.0, 1, 1); dense.setAsDouble(4.0, 2, 2); dense.setAsDouble(-2.0, 3, 3); dense.setAsDouble(-2.0, 1, 3); // print the final matrix on the console System.out.println(dense); // create a sparse empty matrix with 4 rows and 4 columns Matrix sparse = SparseMatrix.Factory.zeros(4, 4); sparse.setAsDouble(2.0, 0, 0); // basic calculations Matrix transpose = dense.transpose(); Matrix sum = dense.plus(sparse); Matrix difference = dense.minus(sparse); Matrix matrixProduct = dense.mtimes(sparse); Matrix scaled = dense.times(2.0); Matrix inverse = dense.inv(); Matrix pseudoInverse = dense.pinv(); double determinant = dense.det(); Matrix[] singularValueDecomposition = dense.svd(); Matrix[] eigenValueDecomposition = dense.eig(); Matrix[] luDecomposition = dense.lu(); Matrix[] qrDecomposition = dense.qr(); Matrix choleskyDecomposition = dense.chol(); } }