/**
* Copyright 2013-2015 Pierre Merienne
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.github.pmerienne.trident.ml.clustering;
import java.util.List;
import com.github.pmerienne.trident.ml.clustering.Clusterer;
import com.github.pmerienne.trident.ml.core.Instance;
import com.github.pmerienne.trident.ml.testing.data.DatasetUtils;
public abstract class ClustererTest {
private final static Integer FOLD_NB = 10;
/**
* Cross validation with 10 folds
*
* @param
* @param <F>
* @param clusterer
* @param samples
* @return
*/
protected double eval(Clusterer clusterer, List<Instance<Integer>> samples) {
double randIndex = 0.0;
for (int i = 0; i < FOLD_NB; i++) {
List<Instance<Integer>> training = DatasetUtils.getTrainingFolds(i, FOLD_NB, samples);
List<Instance<Integer>> eval = DatasetUtils.getEvalFold(i, FOLD_NB, samples);
randIndex += this.eval(clusterer, training, eval);
}
return randIndex / FOLD_NB;
}
protected double eval(Clusterer clusterer, List<Instance<Integer>> training, List<Instance<Integer>> eval) {
clusterer.reset();
// Train
for (Instance<Integer> sample : training) {
clusterer.update(sample.features);
}
RandEvaluator randEvaluator = new RandEvaluator();
double randIndex = randEvaluator.evaluate(clusterer, eval);
return randIndex;
}
}