/**
* Copyright 2013-2015 Pierre Merienne
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.github.pmerienne.trident.ml.classification;
import com.github.pmerienne.trident.ml.util.MathUtil;
public class WinnowClassifier implements Classifier<Boolean> {
private static final long serialVersionUID = -5163481593640555140L;
private double[] weights;
public double promotion = 1.5;
public double demotion = 0.5;
public double threshold = 1.0;
public WinnowClassifier() {
}
public WinnowClassifier(double promotion, double demotion, double threshold) {
this.promotion = promotion;
this.demotion = demotion;
this.threshold = threshold;
}
@Override
public Boolean classify(double[] features) {
if (this.weights == null) {
this.init(features.length);
}
Double evaluation = MathUtil.dot(features, this.weights);
Boolean prediction = evaluation >= this.threshold ? Boolean.TRUE : Boolean.FALSE;
return prediction;
}
@Override
public void update(Boolean label, double[] features) {
Boolean predictedLabel = this.classify(features);
// The model is updated only when a mistake is made
if (!label.equals(predictedLabel)) {
for (int i = 0; i < features.length; i++) {
if (features[i] * this.weights[i] > 0) {
if (predictedLabel) {
// Demotion step
this.weights[i] = this.weights[i] * this.demotion;
} else {
// Promotion step
this.weights[i] = this.weights[i] * this.promotion;
}
}
}
}
}
protected void init(int featureSize) {
// Init weights
this.weights = new double[featureSize];
for (int i = 0; i < featureSize; i++) {
this.weights[i] = this.threshold / featureSize;
}
}
@Override
public void reset() {
this.weights = null;
}
public double[] getWeights() {
return weights;
}
public void setWeights(double[] weights) {
this.weights = weights;
}
public double getThreshold() {
return threshold;
}
public void setThreshold(double threshold) {
this.threshold = threshold;
}
public double getPromotion() {
return promotion;
}
public void setPromotion(double promotion) {
this.promotion = promotion;
}
public double getDemotion() {
return demotion;
}
public void setDemotion(double demotion) {
this.demotion = demotion;
}
@Override
public String toString() {
return "WinnowClassifier [promotion=" + promotion + ", demotion=" + demotion + ", threshold=" + threshold + "]";
}
}