/**
* Copyright 2013-2015 Pierre Merienne
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.github.pmerienne.trident.ml.classification;
import java.util.List;
import com.github.pmerienne.trident.ml.classification.Classifier;
import com.github.pmerienne.trident.ml.core.Instance;
import com.github.pmerienne.trident.ml.testing.data.DatasetUtils;
public abstract class ClassifierTest {
private final static Integer FOLD_NB = 10;
/**
* Cross validation with 10 folds
*
* @param <L>
* @param <F>
* @param classifier
* @param samples
* @return
*/
protected <L> double eval(Classifier<L> classifier, List<Instance<L>> samples) {
double error = 0.0;
for (int i = 0; i < FOLD_NB; i++) {
List<Instance<L>> training = DatasetUtils.getTrainingFolds(i, FOLD_NB, samples);
List<Instance<L>> eval = DatasetUtils.getEvalFold(i, FOLD_NB, samples);
error += this.eval(classifier, training, eval);
}
return error / FOLD_NB;
}
protected <L> double eval(Classifier<L> classifier, List<Instance<L>> training, List<Instance<L>> eval) {
classifier.reset();
// Train
for (Instance<L> sample : training) {
classifier.update(sample.label, sample.features);
}
// Evaluate
double errorCount = 0.0;
L actualLabel;
for (Instance<L> sample : eval) {
actualLabel = classifier.classify(sample.features);
if (!sample.label.equals(actualLabel)) {
errorCount++;
}
}
return errorCount / eval.size();
}
}