/*-
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.nd4j.linalg.learning;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runners.Parameterized;
import org.nd4j.linalg.BaseNd4jTest;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.rng.distribution.Distribution;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.factory.Nd4jBackend;
import org.nd4j.linalg.learning.config.*;
import org.nd4j.linalg.learning.config.AdaGrad;
import org.nd4j.linalg.learning.legacy.*;
import static org.junit.Assert.assertEquals;
@RunWith(Parameterized.class)
public class UpdaterTest extends BaseNd4jTest {
public UpdaterTest(Nd4jBackend backend) {
super(backend);
}
@Test
public void testAdaGradLegacy() {
int rows = 1;
int cols = 1;
org.nd4j.linalg.learning.legacy.AdaGrad grad = new org.nd4j.linalg.learning.legacy.AdaGrad(rows, cols, 1e-3);
grad.setStateViewArray(Nd4j.zeros(1, rows * cols), new int[] {rows, cols}, 'c', true);
INDArray w = Nd4j.ones(rows, cols);
grad.getGradient(w, 0);
assertEquals(1e-1, w.getDouble(0), 1e-1);
}
@Test
public void testNesterovs() {
int rows = 10;
int cols = 2;
NesterovsUpdater grad = new NesterovsUpdater(new Nesterovs(0.5, 0.9, null));
grad.setStateViewArray(Nd4j.zeros(1, rows * cols), new int[] {rows, cols}, 'c', true);
INDArray W = Nd4j.zeros(rows, cols);
Distribution dist = Nd4j.getDistributions().createNormal(1, 1);
for (int i = 0; i < W.rows(); i++)
W.putRow(i, Nd4j.create(dist.sample(W.columns())));
for (int i = 0; i < 5; i++) {
// String learningRates = String.valueOf("\nAdagrad\n " + grad.applyUpdater(W, i)).replaceAll(";", "\n");
// System.out.println(learningRates);
W.addi(Nd4j.randn(rows, cols));
}
}
@Test
public void testAdaGrad() {
int rows = 10;
int cols = 2;
AdaGradUpdater grad = new AdaGradUpdater(new AdaGrad(0.1,AdaGrad.DEFAULT_ADAGRAD_EPSILON));
grad.setStateViewArray(Nd4j.zeros(1, rows * cols), new int[] {rows, cols}, 'c', true);
INDArray W = Nd4j.zeros(rows, cols);
Distribution dist = Nd4j.getDistributions().createNormal(1, 1);
for (int i = 0; i < W.rows(); i++)
W.putRow(i, Nd4j.create(dist.sample(W.columns())));
for (int i = 0; i < 5; i++) {
// String learningRates = String.valueOf("\nAdagrad\n " + grad.applyUpdater(W, i)).replaceAll(";", "\n");
// System.out.println(learningRates);
W.addi(Nd4j.randn(rows, cols));
}
}
@Test
public void testAdaDelta() {
int rows = 10;
int cols = 2;
AdaDeltaUpdater grad = new AdaDeltaUpdater(new AdaDelta());
grad.setStateViewArray(Nd4j.zeros(1, 2 * rows * cols), new int[] {rows, cols}, 'c', true);
INDArray W = Nd4j.zeros(rows, cols);
Distribution dist = Nd4j.getDistributions().createNormal(1e-3, 1e-3);
for (int i = 0; i < W.rows(); i++)
W.putRow(i, Nd4j.create(dist.sample(W.columns())));
for (int i = 0; i < 5; i++) {
// String learningRates = String.valueOf("\nAdaelta\n " + grad.applyUpdater(W, i)).replaceAll(";", "\n");
// System.out.println(learningRates);
W.addi(Nd4j.randn(rows, cols));
}
}
@Test
public void testAdam() {
int rows = 10;
int cols = 2;
AdamUpdater grad = new AdamUpdater(new Adam());
grad.setStateViewArray(Nd4j.zeros(1, 2 * rows * cols), new int[] {rows, cols}, 'c', true);
INDArray W = Nd4j.zeros(rows, cols);
Distribution dist = Nd4j.getDistributions().createNormal(1e-3, 1e-3);
for (int i = 0; i < W.rows(); i++)
W.putRow(i, Nd4j.create(dist.sample(W.columns())));
for (int i = 0; i < 5; i++) {
// String learningRates = String.valueOf("\nAdamUpdater\n " + grad.applyUpdater(W, i)).replaceAll(";", "\n");
// System.out.println(learningRates);
W.addi(Nd4j.randn(rows, cols));
}
}
@Test
public void testAdaMax() {
int rows = 10;
int cols = 2;
AdaMaxUpdater grad = new AdaMaxUpdater(new AdaMax());
grad.setStateViewArray(Nd4j.zeros(1, 2 * rows * cols), new int[] {rows, cols}, 'c', true);
INDArray W = Nd4j.zeros(rows, cols);
Distribution dist = Nd4j.getDistributions().createNormal(1e-3, 1e-3);
for (int i = 0; i < W.rows(); i++)
W.putRow(i, Nd4j.create(dist.sample(W.columns())));
for (int i = 0; i < 5; i++) {
// String learningRates = String.valueOf("\nAdaMax\n " + grad.getGradient(W, i)).replaceAll(";", "\n");
// System.out.println(learningRates);
W.addi(Nd4j.randn(rows, cols));
}
}
@Override
public char ordering() {
return 'f';
}
}