package org.nd4j.linalg.learning; import lombok.Data; import lombok.NoArgsConstructor; import org.apache.commons.math3.util.FastMath; import org.nd4j.linalg.api.ndarray.INDArray; import org.nd4j.linalg.api.ops.impl.transforms.comparison.Max; import org.nd4j.linalg.api.shape.Shape; import org.nd4j.linalg.factory.Nd4j; import org.nd4j.linalg.indexing.BooleanIndexing; import org.nd4j.linalg.indexing.NDArrayIndex; import org.nd4j.linalg.indexing.conditions.Conditions; import org.nd4j.linalg.learning.config.AdaMax; import org.nd4j.linalg.ops.transforms.Transforms; import java.io.Serializable; /** * The AdaMax updater, a variant of Adam. * http://arxiv.org/abs/1412.6980 * * @author Justin Long */ @Data public class AdaMaxUpdater implements GradientUpdater<AdaMax> { private final AdaMax config; private INDArray m, u; // moving avg & exponentially weighted infinity norm private char gradientReshapeOrder; public AdaMaxUpdater(AdaMax config) { this.config = config; } @Override public void setStateViewArray(INDArray viewArray, int[] gradientShape, char gradientOrder, boolean initialize) { if (!viewArray.isRowVector()) throw new IllegalArgumentException("Invalid input: expect row vector input"); if (initialize) viewArray.assign(0); int length = viewArray.length(); this.m = viewArray.get(NDArrayIndex.point(0), NDArrayIndex.interval(0, length / 2)); this.u = viewArray.get(NDArrayIndex.point(0), NDArrayIndex.interval(length / 2, length)); //Reshape to match the expected shape of the input gradient arrays this.m = Shape.newShapeNoCopy(this.m, gradientShape, gradientOrder == 'f'); this.u = Shape.newShapeNoCopy(this.u, gradientShape, gradientOrder == 'f'); if (m == null || u == null) throw new IllegalStateException("Could not correctly reshape gradient view arrays"); this.gradientReshapeOrder = gradientOrder; } /** * Calculate the update based on the given gradient * * @param gradient the gradient to get the update for * @param iteration * @return the gradient */ @Override public void applyUpdater(INDArray gradient, int iteration) { if (m == null || u == null) throw new IllegalStateException("Updater has not been initialized with view state"); //m = B_1 * m + (1-B_1)*grad m.muli(config.getBeta1()).addi(gradient.mul(1-config.getBeta1())); //u = max(B_2 * u, |grad|) u.muli(config.getBeta2()); Transforms.abs(gradient,false); //In-place should be OK here, original gradient values aren't used again later Nd4j.getExecutioner().exec(new Max(u,gradient,u,u.length())); double beta1t = FastMath.pow(config.getBeta1(), iteration + 1); double alphat = config.getLearningRate() / (1.0 - beta1t); if (Double.isNaN(alphat) || Double.isInfinite(alphat) || alphat == 0.0) { alphat = config.getEpsilon(); } u.addi(1e-32); // prevent NaNs in params gradient.assign(m).muli(alphat).divi(u); } }