package org.nd4j.linalg.dataset;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runners.Parameterized;
import org.nd4j.linalg.BaseNd4jTest;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.iterator.TestDataSetIterator;
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.factory.Nd4jBackend;
import org.nd4j.linalg.ops.transforms.Transforms;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
/**
* Created by susaneraly on 7/30/16.
*/
@RunWith(Parameterized.class)
public class NormalizerStandardizeLabelsTest extends BaseNd4jTest {
public NormalizerStandardizeLabelsTest(Nd4jBackend backend) {
super(backend);
}
@Test
public void testBruteForce() {
/* This test creates a dataset where feature values are multiples of consecutive natural numbers
The obtained values are compared to the theoretical mean and std dev
*/
double tolerancePerc = 0.01;
int nSamples = 5120;
int x = 1, y = 2, z = 3;
INDArray featureX = Nd4j.linspace(1, nSamples, nSamples).reshape(nSamples, 1).mul(x);
INDArray featureY = featureX.mul(y);
INDArray featureZ = featureX.mul(z);
INDArray featureSet = Nd4j.concat(1, featureX, featureY, featureZ);
INDArray labelSet = featureSet.dup().getColumns(new int[] {0});
DataSet sampleDataSet = new DataSet(featureSet, labelSet);
double meanNaturalNums = (nSamples + 1) / 2.0;
INDArray theoreticalMean =
Nd4j.create(new double[] {meanNaturalNums * x, meanNaturalNums * y, meanNaturalNums * z});
INDArray theoreticallabelMean = theoreticalMean.dup().getColumns(new int[] {0});
double stdNaturalNums = Math.sqrt((nSamples * nSamples - 1) / 12.0);
INDArray theoreticalStd =
Nd4j.create(new double[] {stdNaturalNums * x, stdNaturalNums * y, stdNaturalNums * z});
INDArray theoreticallabelStd = theoreticalStd.dup().getColumns(new int[] {0});
NormalizerStandardize myNormalizer = new NormalizerStandardize();
myNormalizer.fitLabel(true);
myNormalizer.fit(sampleDataSet);
INDArray meanDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean()));
INDArray labelDelta = Transforms.abs(theoreticallabelMean.sub(myNormalizer.getLabelMean()));
INDArray meanDeltaPerc = meanDelta.div(theoreticalMean).mul(100);
INDArray labelDeltaPerc = labelDelta.div(theoreticallabelMean).mul(100);
double maxMeanDeltaPerc = meanDeltaPerc.max(1).getDouble(0, 0);
assertTrue(maxMeanDeltaPerc < tolerancePerc);
assertTrue(labelDeltaPerc.max(1).getDouble(0, 0) < tolerancePerc);
INDArray stdDelta = Transforms.abs(theoreticalStd.sub(myNormalizer.getStd()));
INDArray stdDeltaPerc = stdDelta.div(theoreticalStd).mul(100);
INDArray stdlabelDeltaPerc =
Transforms.abs(theoreticallabelStd.sub(myNormalizer.getLabelStd())).div(theoreticallabelStd);
double maxStdDeltaPerc = stdDeltaPerc.max(1).mul(100).getDouble(0, 0);
double maxlabelStdDeltaPerc = stdlabelDeltaPerc.max(1).getDouble(0, 0);
assertTrue(maxStdDeltaPerc < tolerancePerc);
assertTrue(maxlabelStdDeltaPerc < tolerancePerc);
// SAME TEST WITH THE ITERATOR
int bSize = 10;
tolerancePerc = 0.1; // 1% of correct value
DataSetIterator sampleIter = new TestDataSetIterator(sampleDataSet, bSize);
myNormalizer.fit(sampleIter);
meanDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean()));
meanDeltaPerc = meanDelta.div(theoreticalMean).mul(100);
maxMeanDeltaPerc = meanDeltaPerc.max(1).getDouble(0, 0);
assertTrue(maxMeanDeltaPerc < tolerancePerc);
stdDelta = Transforms.abs(theoreticalMean.sub(myNormalizer.getMean()));
stdDeltaPerc = stdDelta.div(theoreticalStd).mul(100);
maxStdDeltaPerc = stdDeltaPerc.max(1).getDouble(0, 0);
assertTrue(maxStdDeltaPerc < tolerancePerc);
}
@Test
public void testTransform() {
/*Random dataset is generated such that
AX + B where X is from a normal distribution with mean 0 and std 1
The mean of above will be B and std A
Obtained mean and std dev are compared to theoretical
Transformed values should be the same as X with the same seed.
*/
long randSeed = 2227724;
int nFeatures = 2;
int nSamples = 6400;
int bsize = 8;
int a = 5;
int b = 100;
INDArray sampleMean, sampleStd, sampleMeanDelta, sampleStdDelta, delta, deltaPerc;
double maxDeltaPerc, sampleMeanSEM;
genRandomDataSet normData = new genRandomDataSet(nSamples, nFeatures, a, b, randSeed);
genRandomDataSet expectedData = new genRandomDataSet(nSamples, nFeatures, 1, 0, randSeed);
genRandomDataSet beforeTransformData = new genRandomDataSet(nSamples, nFeatures, a, b, randSeed);
NormalizerStandardize myNormalizer = new NormalizerStandardize();
myNormalizer.fitLabel(true);
DataSetIterator normIterator = normData.getIter(bsize);
DataSetIterator expectedIterator = expectedData.getIter(bsize);
DataSetIterator beforeTransformIterator = beforeTransformData.getIter(bsize);
myNormalizer.fit(normIterator);
double tolerancePerc = 0.5; //within 0.5%
sampleMean = myNormalizer.getMean();
sampleMeanDelta = Transforms.abs(sampleMean.sub(normData.theoreticalMean));
assertTrue(sampleMeanDelta.mul(100).div(normData.theoreticalMean).max(1).getDouble(0, 0) < tolerancePerc);
//sanity check to see if it's within the theoretical standard error of mean
sampleMeanSEM = sampleMeanDelta.div(normData.theoreticalSEM).max(1).getDouble(0, 0);
assertTrue(sampleMeanSEM < 2.6); //99% of the time it should be within this many SEMs
tolerancePerc = 5; //within 5%
sampleStd = myNormalizer.getStd();
sampleStdDelta = Transforms.abs(sampleStd.sub(normData.theoreticalStd));
assertTrue(sampleStdDelta.div(normData.theoreticalStd).max(1).mul(100).getDouble(0, 0) < tolerancePerc);
tolerancePerc = 1; //within 1%
normIterator.setPreProcessor(myNormalizer);
while (normIterator.hasNext()) {
INDArray before = beforeTransformIterator.next().getFeatures();
DataSet here = normIterator.next();
assertEquals(here.getFeatures(), here.getLabels()); //bootstrapping existing test on features
INDArray after = here.getFeatures();
INDArray expected = expectedIterator.next().getFeatures();
delta = Transforms.abs(after.sub(expected));
deltaPerc = delta.div(before.sub(expected));
deltaPerc.muli(100);
maxDeltaPerc = deltaPerc.max(0, 1).getDouble(0, 0);
//System.out.println("=== BEFORE ===");
//System.out.println(before);
//System.out.println("=== AFTER ===");
//System.out.println(after);
//System.out.println("=== SHOULD BE ===");
//System.out.println(expected);
assertTrue(maxDeltaPerc < tolerancePerc);
}
}
public class genRandomDataSet {
/* generate random dataset from normally distributed mean 0, std 1
based on given seed and scaling constants
*/
DataSet sampleDataSet;
INDArray theoreticalMean;
INDArray theoreticalStd;
INDArray theoreticalSEM;
public genRandomDataSet(int nSamples, int nFeatures, int a, int b, long randSeed) {
/* if a =1 and b = 0,normal distribution
otherwise with some random mean and some random distribution
*/
int i = 0;
// Randomly generate scaling constants and add offsets
// to get aA and bB
INDArray aA = a == 1 ? Nd4j.ones(1, nFeatures) : Nd4j.rand(1, nFeatures, randSeed).mul(a); //a = 1, don't scale
INDArray bB = Nd4j.rand(1, nFeatures, randSeed).mul(b); //b = 0 this zeros out
// transform ndarray as X = aA + bB * X
INDArray randomFeatures = Nd4j.zeros(nSamples, nFeatures);
while (i < nFeatures) {
INDArray randomSlice = Nd4j.randn(nSamples, 1, randSeed);
randomSlice.muli(aA.getScalar(0, i));
randomSlice.addi(bB.getScalar(0, i));
randomFeatures.putColumn(i, randomSlice);
i++;
}
INDArray randomLabels = randomFeatures.dup();
this.sampleDataSet = new DataSet(randomFeatures, randomLabels);
this.theoreticalMean = bB.dup();
this.theoreticalStd = aA.dup();
this.theoreticalSEM = this.theoreticalStd.div(Math.sqrt(nSamples));
}
public DataSetIterator getIter(int bsize) {
return new TestDataSetIterator(sampleDataSet, bsize);
}
}
@Override
public char ordering() {
return 'c';
}
}