/* -*-mode:java; c-basic-offset:2; indent-tabs-mode:nil -*- */ /* Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The names of the authors may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT, INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This program is based on zlib-1.1.3, so all credit should go authors * Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu) * and contributors of zlib. */ package com.jcraft.jzlib; // #sijapp cond.if modules_ZLIB is "true" # final class InfTree { static final private int MANY=1440; public static final int fixed_bl = 9; public static final int fixed_bd = 5; public static int[] fixed_tl = ArrayLoader.readIntArray("/fixed_tl.zlib"); public static int[] fixed_td = ArrayLoader.readIntArray("/fixed_td.zlib"); // Tables for deflate from PKZIP's appnote.txt. static final int[] cplens = { // Copy lengths for literal codes 257..285 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0 }; // see note #13 above about 258 static final int[] cplext = { // Extra bits for literal codes 257..285 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112 // 112==invalid }; static final int[] cpdist = { // Copy offsets for distance codes 0..29 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577 }; static final int[] cpdext = { // Extra bits for distance codes 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13}; // If BMAX needs to be larger than 16, then h and x[] should be uLong. static final int BMAX = 15; // maximum bit length of any code int[] hn = null; // hufts used in space int[] v = null; // work area for huft_build int[] c = null; // bit length count table int[] r = null; // table entry for structure assignment int[] u = null; // table stack int[] x = null; // bit offsets, then code stack private void huft_build(int[] b, // code lengths in bits (all assumed <= BMAX) int bindex, int n, // number of codes (assumed <= 288) int s, // number of simple-valued codes (0..s-1) int[] d, // list of base values for non-simple codes int[] e, // list of extra bits for non-simple codes int[] t, // result: starting table int[] m, // maximum lookup bits, returns actual int[] hp,// space for trees int[] hn,// hufts used in space int[] v // working area: values in order of bit length ) throws ZError { // Given a list of code lengths and a maximum table size, make a set of // tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR // if the given code set is incomplete (the tables are still built in this // case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of // lengths). int a; // counter for codes of length k int f; // i repeats in table every f entries int g; // maximum code length int h; // table level int i; // counter, current code int j; // counter int k; // number of bits in current code int l; // bits per table (returned in m) int mask; // (1 << w) - 1, to avoid cc -O bug on HP int p; // pointer into c[], b[], or v[] int q; // points to current table int w; // bits before this table == (l * h) int xp; // pointer into x int y; // number of dummy codes added int z; // number of entries in current table // Generate counts for each bit length p = 0; i = n; do { c[b[bindex + p]]++; p++; i--; // assume all entries <= BMAX } while (0 != i); if (c[0] == n) { // null input--all zero length codes t[0] = -1; m[0] = 0; return; } // Find minimum and maximum length, bound *m by those l = m[0]; for (j = 1; j <= BMAX; ++j) { if (0 != c[j]) break; } k = j; // minimum code length if (l < j) { l = j; } for (i = BMAX; i != 0; --i) { if (0 != c[i]) break; } g = i; // maximum code length if (l > i) { l = i; } m[0] = l; // Adjust last length count to fill out codes, if needed for (y = 1 << j; j < i; j++, y <<= 1){ if ((y -= c[j]) < 0) { throw new ZError(ZError.Z_DATA_ERROR); } } if ((y -= c[i]) < 0) { throw new ZError(ZError.Z_DATA_ERROR); } c[i] += y; // Generate starting offsets into the value table for each length x[1] = j = 0; p = 1; xp = 2; while (--i!=0) { // note that i == g from above x[xp] = (j += c[p]); xp++; p++; } // Make a table of values in order of bit lengths i = 0; p = 0; do { if ((j = b[bindex+p]) != 0) { v[x[j]++] = i; } p++; } while (++i < n); n = x[g]; // set n to length of v // Generate the Huffman codes and for each, make the table entries x[0] = i = 0; // first Huffman code is zero p = 0; // grab values in bit order h = -1; // no tables yet--level -1 w = -l; // bits decoded == (l * h) u[0] = 0; // just to keep compilers happy q = 0; // ditto z = 0; // ditto // go through the bit lengths (k already is bits in shortest code) for (; k <= g; k++) { a = c[k]; while (a--!=0) { // here i is the Huffman code of length k bits for value *p // make tables up to required level while (k > w + l) { h++; w += l; // previous table always l bits // compute minimum size table less than or equal to l bits z = g - w; z = (z > l) ? l : z; // table size upper limit if ((f=1<<(j=k-w))>a+1) { // try a k-w bit table // too few codes for k-w bit table f -= a + 1; // deduct codes from patterns left xp = k; if (j < z) { while (++j < z) { // try smaller tables up to z bits if ((f <<= 1) <= c[++xp]) break; // enough codes to use up j bits f -= c[xp]; // else deduct codes from patterns } } } z = 1 << j; // table entries for j-bit table // allocate new table if (hn[0] + z > MANY) { // (note: doesn't matter for fixed) throw new ZError(ZError.Z_DATA_ERROR); // overflow of MANY } u[h] = q = /*hp+*/ hn[0]; // DEBUG hn[0] += z; // connect to last table, if there is one if(h!=0) { x[h]=i; // save pattern for backing up r[0]=(byte)j; // bits in this table r[1]=(byte)l; // bits to dump before this table j=i>>>(w - l); r[2] = (int)(q - u[h-1] - j); // offset to this table System.arraycopy(r, 0, hp, (u[h-1]+j)*3, 3); // connect to last table } else { t[0] = q; // first table is returned result } } // set up table entry in r r[1] = (byte)(k - w); if (p >= n){ r[0] = 128 + 64; // out of values--invalid code } else if (v[p] < s) { r[0] = (byte)(v[p] < 256 ? 0 : 32 + 64); // 256 is end-of-block r[2] = v[p++]; // simple code is just the value } else { r[0]=(byte)(e[v[p]-s]+16+64); // non-simple--look up in lists r[2]=d[v[p++] - s]; } // fill code-like entries with r f = 1 << (k - w); for (j = i >>> w; j < z; j += f) { System.arraycopy(r, 0, hp, (q + j) * 3, 3); } // backwards increment the k-bit code i for (j = 1 << (k - 1); (i & j)!=0; j >>>= 1) { i ^= j; } i ^= j; // backup over finished tables mask = (1 << w) - 1; // needed on HP, cc -O bug while ((i & mask) != x[h]) { h--; // don't need to update q w -= l; mask = (1 << w) - 1; } } } // Return Z_BUF_ERROR if we were given an incomplete table if (y != 0 && g != 1) { ZStream.setMsg("incomplete some tree"); throw new ZError(ZError.Z_BUF_ERROR); } } /** * * @param c 19 code lengths * @param bb bits tree desired/actual depth * @param tb bits tree result * @param hp space for trees */ void inflate_trees_bits(int[] c, int[] bb, int[] tb, int[] hp) throws ZError { initWorkArea(19); hn[0] = 0; huft_build(c, 0, 19, 19, null, null, tb, bb, hp, hn, v); if (0 == bb[0]) { ZStream.setMsg("incomplete dynamic bit lengths tree"); throw new ZError(ZError.Z_DATA_ERROR); } } void inflate_trees_dynamic(int nl, // number of literal/length codes int nd, // number of distance codes int[] c, // that many (total) code lengths int[] bl, // literal desired/actual bit depth int[] bd, // distance desired/actual bit depth int[] tl, // literal/length tree result int[] td, // distance tree result int[] hp // space for trees ) throws ZError { // build literal/length tree initWorkArea(288); hn[0] = 0; huft_build(c, 0, nl, 257, cplens, cplext, tl, bl, hp, hn, v); if (0 == bl[0]) { ZStream.setMsg("incomplete literal/length tree"); throw new ZError(ZError.Z_DATA_ERROR); } // build distance tree initWorkArea(288); huft_build(c, nl, nd, 0, cpdist, cpdext, td, bd, hp, hn, v); if (bd[0] == 0 && nl > 257) { ZStream.setMsg("empty distance tree with lengths"); throw new ZError(ZError.Z_DATA_ERROR); } } private void initWorkArea(int vsize) { if (null == hn) { hn = new int[1]; v = new int[vsize]; c = new int[BMAX + 1]; r = new int[3]; u = new int[BMAX]; x = new int[BMAX + 1]; } else { if (v.length < vsize) { v = new int[vsize]; } else { for (int i = 0; i < vsize; ++i) {v[i] = 0;} } for (int i = 0; i < BMAX + 1; ++i) {c[i] = 0;} for (int i = 0; i < 3; ++i) {r[i] = 0;} //for (int i = 0; i < BMAX; ++i) {u[i] = 0;} System.arraycopy(c, 0, u, 0, BMAX); //for (int i = 0; i < BMAX + 1; ++i) {x[i] = 0;} System.arraycopy(c, 0, x, 0, BMAX+1); } } } // #sijapp cond.end #