/* * (c) Copyright 2006-2011 by Volker Bergmann. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, is permitted under the terms of the * GNU General Public License. * * For redistributing this software or a derivative work under a license other * than the GPL-compatible Free Software License as defined by the Free * Software Foundation or approved by OSI, you must first obtain a commercial * license to this software product from Volker Bergmann. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * WITHOUT A WARRANTY OF ANY KIND. ALL EXPRESS OR IMPLIED CONDITIONS, * REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE * HEREBY EXCLUDED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.databene.benerator.util; import java.util.Arrays; import java.util.Date; import java.util.List; import java.util.Random; import org.databene.commons.StringUtil; import org.databene.script.DatabeneScriptParser; import org.databene.script.WeightedSample; /** * Provides utility functions for generating numbers in an interval.<br/> * <br/> * Created: 03.09.2006 13:23:02 * @since 0.1 * @author Volker Bergmann */ public class RandomUtil { /** The basic random provider */ private static Random random = new Random(); /** Generates a random long value in the range from min to max */ public static long randomLong(long min, long max) { if (min > max) throw new IllegalArgumentException("min (" + min + ") > max (" + max + ")"); long range = max - min + 1; long result; if (range != 0) result = min + (random.nextLong() % range); else result = random.nextLong(); if (result < min) result += range; return result; } /** Generates a random int value in the range from min to max */ public static int randomInt(int min, int max) { if (min > max) throw new IllegalArgumentException("min > max: " + min + " > " + max); int range = max - min + 1; int result; if (range != 0) result = min + (random.nextInt() % range); else result = random.nextInt(); if (result < min) result += range; return result; } public static <T> T randomElement(T ... values) { if (values.length == 0) throw new IllegalArgumentException("Cannot choose random value from an empty array"); return values[random.nextInt(values.length)]; } public static <T> T randomElement(List<T> values) { return values.get(randomIndex(values)); } public static int randomIndex(List<?> values) { if (values.size() == 0) throw new IllegalArgumentException("Cannot create random index for an empty array"); return random.nextInt(values.size()); } public static char randomDigit(int min) { return (char) ('0' + min + random.nextInt(10 - min)); } public static float randomProbability() { return random.nextFloat(); } public static Date randomDate(Date min, Date max) { return new Date(randomLong(min.getTime(), max.getTime())); } public static Object randomFromWeightLiteral(String literal) { if (StringUtil.isEmpty(literal)) return null; WeightedSample<?>[] samples = DatabeneScriptParser.parseWeightedLiteralList(literal); int sampleCount = samples.length; if (sampleCount == 1) return samples[0]; // normalize weights float[] probSum = new float[sampleCount]; double sum = 0; for (int i = 0; i < sampleCount; i++) { double weight = samples[i].getWeight(); if (weight < 0) throw new IllegalArgumentException("Negative weight in literal: " + literal); sum += weight; probSum[i] = (float) sum; } if (sum == 0) return samples[randomInt(0, sampleCount)]; // for unweighted values, use simple random for (int i = 0; i < sampleCount; i++) probSum[i] /= (float) sum; // choose an item float probability = randomProbability(); int i = Arrays.binarySearch(probSum, probability); if (i < 0) i = - i - 1; if (i >= probSum.length) i = probSum.length - 1; return samples[i].getValue(); } }