/*
* (c) Copyright 2009-2011 by Volker Bergmann. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, is permitted under the terms of the
* GNU General Public License.
*
* For redistributing this software or a derivative work under a license other
* than the GPL-compatible Free Software License as defined by the Free
* Software Foundation or approved by OSI, you must first obtain a commercial
* license to this software product from Volker Bergmann.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* WITHOUT A WARRANTY OF ANY KIND. ALL EXPRESS OR IMPLIED CONDITIONS,
* REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
* HEREBY EXCLUDED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
package org.databene.benerator.sample;
import java.util.ArrayList;
import java.util.List;
import org.databene.benerator.GeneratorContext;
import org.databene.benerator.WeightedGenerator;
import org.databene.benerator.distribution.AbstractWeightFunction;
import org.databene.benerator.distribution.IndividualWeight;
import org.databene.benerator.distribution.WeightedLongGenerator;
import org.databene.benerator.wrapper.ProductWrapper;
import org.databene.commons.Assert;
/**
* Maps an {@link IndividualWeight} distribution to an {@link AbstractWeightFunction} and uses its capabilities
* for providing distribution features based on the {@link IndividualWeight}'s characteristics.<br/>
* <br/>
* Created at 01.07.2009 11:48:23
* @since 0.6.0
* @author Volker Bergmann
*/
public class IndividualWeightSampleGenerator<E> extends AbstractSampleGenerator<E> implements WeightedGenerator<E> {
/** Keeps the Sample information */
List<E> samples = new ArrayList<E>();
IndividualWeight<E> individualWeight;
private double totalWeight;
/** Generator for choosing a List index of the sample list */
private WeightedLongGenerator indexGenerator;
// constructors ----------------------------------------------------------------------------------------------------
/** Initializes the generator to an unweighted sample list */
public IndividualWeightSampleGenerator(Class<E> generatedType, IndividualWeight<E> individualWeight, E ... values) {
super(generatedType);
Assert.notNull(individualWeight, "individualWeight");
this.individualWeight = individualWeight;
setValues(values);
}
/** Initializes the generator to an unweighted sample list */
public IndividualWeightSampleGenerator(Class<E> generatedType, IndividualWeight<E> individualWeight, Iterable<E> values) {
super(generatedType);
Assert.notNull(individualWeight, "individualWeight");
this.individualWeight = individualWeight;
setValues(values);
}
// samples property ------------------------------------------------------------------------------------------------
/** Sets the sample list to the specified weighted values */
public void setSamples(E ... samples) {
this.samples.clear();
for (E sample : samples)
addValue(sample);
}
// values property -------------------------------------------------------------------------------------------------
/** Adds an unweighted value to the sample list */
@Override
public <T extends E> void addValue(T value) {
samples.add(value);
this.totalWeight += individualWeight.weight(value);
}
@Override
public long getVariety() {
return samples.size();
}
public double getWeight() {
return totalWeight;
}
@Override
public void clear() {
this.samples.clear();
}
// Generator implementation ----------------------------------------------------------------------------------------
/** Initializes all attributes */
@Override
public void init(GeneratorContext context) {
assertNotInitialized();
indexGenerator = new WeightedLongGenerator(0, samples.size() - 1, 1, new SampleWeightFunction());
indexGenerator.init(context);
super.init(context);
}
public ProductWrapper<E> generate(ProductWrapper<E> wrapper) {
assertInitialized();
if (samples.size() == 0)
return null;
int index = indexGenerator.generate().intValue();
return wrapper.wrap(samples.get(index));
}
// implementation --------------------------------------------------------------------------------------------------
/** Weight function that evaluates the weights that are stored in the sample list. */
class SampleWeightFunction extends AbstractWeightFunction {
/** @see org.databene.benerator.distribution.WeightFunction#value(double) */
public double value(double param) {
return individualWeight.weight(samples.get((int) param));
}
/** creates a String representation */
@Override
public String toString() {
return getClass().getSimpleName();
}
}
// java.lang.Object overrides --------------------------------------------------------------------------------------
@Override
public String toString() {
return getClass().getSimpleName();
}
}