/*
* (c) Copyright 2006-2011 by Volker Bergmann. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, is permitted under the terms of the
* GNU General Public License.
*
* For redistributing this software or a derivative work under a license other
* than the GPL-compatible Free Software License as defined by the Free
* Software Foundation or approved by OSI, you must first obtain a commercial
* license to this software product from Volker Bergmann.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* WITHOUT A WARRANTY OF ANY KIND. ALL EXPRESS OR IMPLIED CONDITIONS,
* REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
* HEREBY EXCLUDED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
package org.databene.benerator.distribution;
import org.databene.benerator.*;
import org.databene.benerator.distribution.function.ConstantFunction;
import org.databene.benerator.primitive.number.AbstractNonNullNumberGenerator;
import java.util.Random;
import java.util.Arrays;
/**
* Long Generator that supports a weight function.<br/>
* <br/>
* Created: 18.06.2006 15:00:41
* @since 0.1
* @author Volker Bergmann
*/
public class WeightedLongGenerator extends AbstractNonNullNumberGenerator<Long> {
private WeightFunction function;
private Random randomizer;
private float[] probSum;
// constructors ----------------------------------------------------------------------------------------------------
public WeightedLongGenerator() {
this(Long.MIN_VALUE, Long.MAX_VALUE);
}
public WeightedLongGenerator(long min, long max) {
this(min, max, 1);
}
public WeightedLongGenerator(long min, long max, long granularity) {
this(min, max, granularity, new ConstantFunction(1));
}
public WeightedLongGenerator(long min, long max, WeightFunction function) {
this(min, max, 1, function);
}
public WeightedLongGenerator(long min, long max, long granularity, WeightFunction function) {
super(Long.class, min, max, granularity);
this.function = function;
this.randomizer = new Random();
}
// properties ------------------------------------------------------------------------------------------------------
public Distribution getDistribution() {
return function;
}
public void setDistribution(Distribution distribution) {
if (!(distribution instanceof WeightFunction))
throw new IllegalArgumentException("Function expected, found: " + distribution);
this.function = (WeightFunction) distribution;
}
// Generator implementation ----------------------------------------------------------------------------------------
@Override
public void init(GeneratorContext context) {
normalize();
super.init(context);
}
@Override
public Long generate() {
assertInitialized();
float random = randomizer.nextFloat();
long n = intervallNoOfRandom(random);
return min + n * granularity;
}
// private helpers -------------------------------------------------------------------------------------------------
private long intervallNoOfRandom(float random) {
int i = Arrays.binarySearch(probSum, random);
if (i < 0)
i = - i - 1;
if (i >= probSum.length)
return probSum.length - 1;
return i;
}
private void normalize() {
int sampleCount = (int) ((max - min) / granularity) + 1;
if (sampleCount > 100000)
throw new InvalidGeneratorSetupException("granularity", "too small, resulting in a set of " + sampleCount + " samples");
probSum = new float[sampleCount];
if (sampleCount == 1)
probSum[0] = 1;
else {
double sum = 0;
for (int i = 0; i < sampleCount; i++) {
long dx = (max - min) / (sampleCount - 1);
long x = min + i * dx;
sum += function.value(x);
probSum[i] = (float) sum;
}
if (sum == 0) {
sum = 1;
float avgProp = (float)1./sampleCount;
for (int i = 0; i < sampleCount; i++)
probSum[i] = (i + 1) * avgProp;
} else if (sum < 0)
throw new IllegalGeneratorStateException(
"Invalid WeightFunction: Sum is negative (" + sum + ") for " + function);
for (int i = 0; i < sampleCount; i++) {
probSum[i] /= (float) sum;
}
}
}
}