/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package java.util; import java.io.Serializable; /** * This class provides methods that generates pseudo-random numbers of different * types, such as {@code int}, {@code long}, {@code double}, and {@code float}. * * @see Properties * @see PropertyResourceBundle */ public class Random implements Serializable { private static final long serialVersionUID = 3905348978240129619L; private static final long multiplier = 0x5deece66dL; /** * The boolean value indicating if the second Gaussian number is available. * * @serial */ private boolean haveNextNextGaussian; /** * @serial It is associated with the internal state of this generator. */ private long seed; /** * The second Gaussian generated number. * * @serial */ private double nextNextGaussian; /** * Constructs a random generator with an initial state that is * unlikely to be duplicated by a subsequent instantiation. * * <p>The initial state (that is, the seed) is <i>partially</i> based * on the current time of day in milliseconds.</p> * * @see #setSeed */ public Random() { // Note: Using identityHashCode() to be hermetic wrt subclasses. setSeed(System.currentTimeMillis() + System.identityHashCode(this)); } /** * Construct a random generator with the given {@code seed} as the * initial state. Equivalent to {@code Random r = new Random(); r.setSeed(seed);}. * * @param seed * the seed that will determine the initial state of this random * number generator. * @see #setSeed */ public Random(long seed) { setSeed(seed); } /** * Returns a pseudo-random uniformly distributed {@code int} value of * the number of bits specified by the argument {@code bits} as * described by Donald E. Knuth in <i>The Art of Computer Programming, * Volume 2: Seminumerical Algorithms</i>, section 3.2.1. * * @param bits * number of bits of the returned value. * @return a pseudo-random generated int number. * @see #nextBytes * @see #nextDouble * @see #nextFloat * @see #nextInt() * @see #nextInt(int) * @see #nextGaussian * @see #nextLong */ protected synchronized int next(int bits) { seed = (seed * multiplier + 0xbL) & ((1L << 48) - 1); return (int) (seed >>> (48 - bits)); } /** * Returns the next pseudo-random, uniformly distributed {@code boolean} value * generated by this generator. * * @return a pseudo-random, uniformly distributed boolean value. */ public boolean nextBoolean() { return next(1) != 0; } /** * Modifies the {@code byte} array by a random sequence of {@code byte}s generated by this * random number generator. * * @param buf * non-null array to contain the new random {@code byte}s. * @see #next */ public void nextBytes(byte[] buf) { int rand = 0, count = 0, loop = 0; while (count < buf.length) { if (loop == 0) { rand = nextInt(); loop = 3; } else { loop--; } buf[count++] = (byte) rand; rand >>= 8; } } /** * Generates a normally distributed random {@code double} number between 0.0 * inclusively and 1.0 exclusively. * * @return a random {@code double} in the range [0.0 - 1.0) * @see #nextFloat */ public double nextDouble() { return ((((long) next(26) << 27) + next(27)) / (double) (1L << 53)); } /** * Generates a normally distributed random {@code float} number between 0.0 * inclusively and 1.0 exclusively. * * @return float a random {@code float} number between [0.0 and 1.0) * @see #nextDouble */ public float nextFloat() { return (next(24) / 16777216f); } /** * Pseudo-randomly generates (approximately) a normally distributed * {@code double} value with mean 0.0 and a standard deviation value * of {@code 1.0} using the <i>polar method<i> of G. E. P. Box, M. * E. Muller, and G. Marsaglia, as described by Donald E. Knuth in <i>The * Art of Computer Programming, Volume 2: Seminumerical Algorithms</i>, * section 3.4.1, subsection C, algorithm P. * * @return a random {@code double} * @see #nextDouble */ public synchronized double nextGaussian() { if (haveNextNextGaussian) { // if X1 has been returned, return the // second Gaussian haveNextNextGaussian = false; return nextNextGaussian; } double v1, v2, s; do { v1 = 2 * nextDouble() - 1; // Generates two independent random // variables U1, U2 v2 = 2 * nextDouble() - 1; s = v1 * v1 + v2 * v2; } while (s >= 1); double norm = Math.sqrt(-2 * Math.log(s) / s); nextNextGaussian = v2 * norm; // should that not be norm instead // of multiplier ? haveNextNextGaussian = true; return v1 * norm; // should that not be norm instead of multiplier // ? } /** * Generates a uniformly distributed 32-bit {@code int} value from * the random number sequence. * * @return a uniformly distributed {@code int} value. * @see java.lang.Integer#MAX_VALUE * @see java.lang.Integer#MIN_VALUE * @see #next * @see #nextLong */ public int nextInt() { return next(32); } /** * Returns a new pseudo-random {@code int} value which is uniformly distributed * between 0 (inclusively) and the value of {@code n} (exclusively). * * @param n * the exclusive upper border of the range [0 - n). * @return a random {@code int}. */ public int nextInt(int n) { if (n > 0) { if ((n & -n) == n) { return (int) ((n * (long) next(31)) >> 31); } int bits, val; do { bits = next(31); val = bits % n; } while (bits - val + (n - 1) < 0); return val; } throw new IllegalArgumentException(); } /** * Generates a uniformly distributed 64-bit integer value from * the random number sequence. * * @return 64-bit random integer. * @see java.lang.Integer#MAX_VALUE * @see java.lang.Integer#MIN_VALUE * @see #next * @see #nextInt() * @see #nextInt(int) */ public long nextLong() { return ((long) next(32) << 32) + next(32); } /** * Modifies the seed a using linear congruential formula presented in <i>The * Art of Computer Programming, Volume 2</i>, Section 3.2.1. * * @param seed * the seed that alters the state of the random number generator. * @see #next * @see #Random() * @see #Random(long) */ public synchronized void setSeed(long seed) { this.seed = (seed ^ multiplier) & ((1L << 48) - 1); haveNextNextGaussian = false; } }