package org.bouncycastle.math.ec.custom.sec; import java.math.BigInteger; import org.bouncycastle.math.ec.ECFieldElement; import org.bouncycastle.math.raw.Mod; import org.bouncycastle.math.raw.Nat256; import org.bouncycastle.util.Arrays; public class SecP256K1FieldElement extends ECFieldElement { public static final BigInteger Q = SecP256K1Curve.q; protected int[] x; public SecP256K1FieldElement(BigInteger x) { if (x == null || x.signum() < 0 || x.compareTo(Q) >= 0) { throw new IllegalArgumentException("x value invalid for SecP256K1FieldElement"); } this.x = SecP256K1Field.fromBigInteger(x); } public SecP256K1FieldElement() { this.x = Nat256.create(); } protected SecP256K1FieldElement(int[] x) { this.x = x; } public boolean isZero() { return Nat256.isZero(x); } public boolean isOne() { return Nat256.isOne(x); } public boolean testBitZero() { return Nat256.getBit(x, 0) == 1; } public BigInteger toBigInteger() { return Nat256.toBigInteger(x); } public String getFieldName() { return "SecP256K1Field"; } public int getFieldSize() { return Q.bitLength(); } public ECFieldElement add(ECFieldElement b) { int[] z = Nat256.create(); SecP256K1Field.add(x, ((SecP256K1FieldElement)b).x, z); return new SecP256K1FieldElement(z); } public ECFieldElement addOne() { int[] z = Nat256.create(); SecP256K1Field.addOne(x, z); return new SecP256K1FieldElement(z); } public ECFieldElement subtract(ECFieldElement b) { int[] z = Nat256.create(); SecP256K1Field.subtract(x, ((SecP256K1FieldElement)b).x, z); return new SecP256K1FieldElement(z); } public ECFieldElement multiply(ECFieldElement b) { int[] z = Nat256.create(); SecP256K1Field.multiply(x, ((SecP256K1FieldElement)b).x, z); return new SecP256K1FieldElement(z); } public ECFieldElement divide(ECFieldElement b) { // return multiply(b.invert()); int[] z = Nat256.create(); Mod.invert(SecP256K1Field.P, ((SecP256K1FieldElement)b).x, z); SecP256K1Field.multiply(z, x, z); return new SecP256K1FieldElement(z); } public ECFieldElement negate() { int[] z = Nat256.create(); SecP256K1Field.negate(x, z); return new SecP256K1FieldElement(z); } public ECFieldElement square() { int[] z = Nat256.create(); SecP256K1Field.square(x, z); return new SecP256K1FieldElement(z); } public ECFieldElement invert() { // return new SecP256K1FieldElement(toBigInteger().modInverse(Q)); int[] z = Nat256.create(); Mod.invert(SecP256K1Field.P, x, z); return new SecP256K1FieldElement(z); } // D.1.4 91 /** * return a sqrt root - the routine verifies that the calculation returns the right value - if * none exists it returns null. */ public ECFieldElement sqrt() { /* * Raise this element to the exponent 2^254 - 2^30 - 2^7 - 2^6 - 2^5 - 2^4 - 2^2 * * Breaking up the exponent's binary representation into "repunits", we get: * { 223 1s } { 1 0s } { 22 1s } { 4 0s } { 2 1s } { 2 0s} * * Therefore we need an addition chain containing 2, 22, 223 (the lengths of the repunits) * We use: 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223] */ int[] x1 = this.x; if (Nat256.isZero(x1) || Nat256.isOne(x1)) { return this; } int[] x2 = Nat256.create(); SecP256K1Field.square(x1, x2); SecP256K1Field.multiply(x2, x1, x2); int[] x3 = Nat256.create(); SecP256K1Field.square(x2, x3); SecP256K1Field.multiply(x3, x1, x3); int[] x6 = Nat256.create(); SecP256K1Field.squareN(x3, 3, x6); SecP256K1Field.multiply(x6, x3, x6); int[] x9 = x6; SecP256K1Field.squareN(x6, 3, x9); SecP256K1Field.multiply(x9, x3, x9); int[] x11 = x9; SecP256K1Field.squareN(x9, 2, x11); SecP256K1Field.multiply(x11, x2, x11); int[] x22 = Nat256.create(); SecP256K1Field.squareN(x11, 11, x22); SecP256K1Field.multiply(x22, x11, x22); int[] x44 = x11; SecP256K1Field.squareN(x22, 22, x44); SecP256K1Field.multiply(x44, x22, x44); int[] x88 = Nat256.create(); SecP256K1Field.squareN(x44, 44, x88); SecP256K1Field.multiply(x88, x44, x88); int[] x176 = Nat256.create(); SecP256K1Field.squareN(x88, 88, x176); SecP256K1Field.multiply(x176, x88, x176); int[] x220 = x88; SecP256K1Field.squareN(x176, 44, x220); SecP256K1Field.multiply(x220, x44, x220); int[] x223 = x44; SecP256K1Field.squareN(x220, 3, x223); SecP256K1Field.multiply(x223, x3, x223); int[] t1 = x223; SecP256K1Field.squareN(t1, 23, t1); SecP256K1Field.multiply(t1, x22, t1); SecP256K1Field.squareN(t1, 6, t1); SecP256K1Field.multiply(t1, x2, t1); SecP256K1Field.squareN(t1, 2, t1); int[] t2 = x2; SecP256K1Field.square(t1, t2); return Nat256.eq(x1, t2) ? new SecP256K1FieldElement(t1) : null; } public boolean equals(Object other) { if (other == this) { return true; } if (!(other instanceof SecP256K1FieldElement)) { return false; } SecP256K1FieldElement o = (SecP256K1FieldElement)other; return Nat256.eq(x, o.x); } public int hashCode() { return Q.hashCode() ^ Arrays.hashCode(x, 0, 8); } }