package org.bouncycastle.math.ec; import org.bouncycastle.util.Arrays; import java.math.BigInteger; class LongArray { // private static long DEINTERLEAVE_MASK = 0x5555555555555555L; /* * This expands 8 bit indices into 16 bit contents (high bit 14), by inserting 0s between bits. * In a binary field, this operation is the same as squaring an 8 bit number. */ private static final int[] INTERLEAVE2_TABLE = new int[] { 0x0000, 0x0001, 0x0004, 0x0005, 0x0010, 0x0011, 0x0014, 0x0015, 0x0040, 0x0041, 0x0044, 0x0045, 0x0050, 0x0051, 0x0054, 0x0055, 0x0100, 0x0101, 0x0104, 0x0105, 0x0110, 0x0111, 0x0114, 0x0115, 0x0140, 0x0141, 0x0144, 0x0145, 0x0150, 0x0151, 0x0154, 0x0155, 0x0400, 0x0401, 0x0404, 0x0405, 0x0410, 0x0411, 0x0414, 0x0415, 0x0440, 0x0441, 0x0444, 0x0445, 0x0450, 0x0451, 0x0454, 0x0455, 0x0500, 0x0501, 0x0504, 0x0505, 0x0510, 0x0511, 0x0514, 0x0515, 0x0540, 0x0541, 0x0544, 0x0545, 0x0550, 0x0551, 0x0554, 0x0555, 0x1000, 0x1001, 0x1004, 0x1005, 0x1010, 0x1011, 0x1014, 0x1015, 0x1040, 0x1041, 0x1044, 0x1045, 0x1050, 0x1051, 0x1054, 0x1055, 0x1100, 0x1101, 0x1104, 0x1105, 0x1110, 0x1111, 0x1114, 0x1115, 0x1140, 0x1141, 0x1144, 0x1145, 0x1150, 0x1151, 0x1154, 0x1155, 0x1400, 0x1401, 0x1404, 0x1405, 0x1410, 0x1411, 0x1414, 0x1415, 0x1440, 0x1441, 0x1444, 0x1445, 0x1450, 0x1451, 0x1454, 0x1455, 0x1500, 0x1501, 0x1504, 0x1505, 0x1510, 0x1511, 0x1514, 0x1515, 0x1540, 0x1541, 0x1544, 0x1545, 0x1550, 0x1551, 0x1554, 0x1555, 0x4000, 0x4001, 0x4004, 0x4005, 0x4010, 0x4011, 0x4014, 0x4015, 0x4040, 0x4041, 0x4044, 0x4045, 0x4050, 0x4051, 0x4054, 0x4055, 0x4100, 0x4101, 0x4104, 0x4105, 0x4110, 0x4111, 0x4114, 0x4115, 0x4140, 0x4141, 0x4144, 0x4145, 0x4150, 0x4151, 0x4154, 0x4155, 0x4400, 0x4401, 0x4404, 0x4405, 0x4410, 0x4411, 0x4414, 0x4415, 0x4440, 0x4441, 0x4444, 0x4445, 0x4450, 0x4451, 0x4454, 0x4455, 0x4500, 0x4501, 0x4504, 0x4505, 0x4510, 0x4511, 0x4514, 0x4515, 0x4540, 0x4541, 0x4544, 0x4545, 0x4550, 0x4551, 0x4554, 0x4555, 0x5000, 0x5001, 0x5004, 0x5005, 0x5010, 0x5011, 0x5014, 0x5015, 0x5040, 0x5041, 0x5044, 0x5045, 0x5050, 0x5051, 0x5054, 0x5055, 0x5100, 0x5101, 0x5104, 0x5105, 0x5110, 0x5111, 0x5114, 0x5115, 0x5140, 0x5141, 0x5144, 0x5145, 0x5150, 0x5151, 0x5154, 0x5155, 0x5400, 0x5401, 0x5404, 0x5405, 0x5410, 0x5411, 0x5414, 0x5415, 0x5440, 0x5441, 0x5444, 0x5445, 0x5450, 0x5451, 0x5454, 0x5455, 0x5500, 0x5501, 0x5504, 0x5505, 0x5510, 0x5511, 0x5514, 0x5515, 0x5540, 0x5541, 0x5544, 0x5545, 0x5550, 0x5551, 0x5554, 0x5555 }; /* * This expands 7 bit indices into 21 bit contents (high bit 18), by inserting 0s between bits. */ private static final int[] INTERLEAVE3_TABLE = new int[] { 0x00000, 0x00001, 0x00008, 0x00009, 0x00040, 0x00041, 0x00048, 0x00049, 0x00200, 0x00201, 0x00208, 0x00209, 0x00240, 0x00241, 0x00248, 0x00249, 0x01000, 0x01001, 0x01008, 0x01009, 0x01040, 0x01041, 0x01048, 0x01049, 0x01200, 0x01201, 0x01208, 0x01209, 0x01240, 0x01241, 0x01248, 0x01249, 0x08000, 0x08001, 0x08008, 0x08009, 0x08040, 0x08041, 0x08048, 0x08049, 0x08200, 0x08201, 0x08208, 0x08209, 0x08240, 0x08241, 0x08248, 0x08249, 0x09000, 0x09001, 0x09008, 0x09009, 0x09040, 0x09041, 0x09048, 0x09049, 0x09200, 0x09201, 0x09208, 0x09209, 0x09240, 0x09241, 0x09248, 0x09249, 0x40000, 0x40001, 0x40008, 0x40009, 0x40040, 0x40041, 0x40048, 0x40049, 0x40200, 0x40201, 0x40208, 0x40209, 0x40240, 0x40241, 0x40248, 0x40249, 0x41000, 0x41001, 0x41008, 0x41009, 0x41040, 0x41041, 0x41048, 0x41049, 0x41200, 0x41201, 0x41208, 0x41209, 0x41240, 0x41241, 0x41248, 0x41249, 0x48000, 0x48001, 0x48008, 0x48009, 0x48040, 0x48041, 0x48048, 0x48049, 0x48200, 0x48201, 0x48208, 0x48209, 0x48240, 0x48241, 0x48248, 0x48249, 0x49000, 0x49001, 0x49008, 0x49009, 0x49040, 0x49041, 0x49048, 0x49049, 0x49200, 0x49201, 0x49208, 0x49209, 0x49240, 0x49241, 0x49248, 0x49249 }; /* * This expands 8 bit indices into 32 bit contents (high bit 28), by inserting 0s between bits. */ private static final int[] INTERLEAVE4_TABLE = new int[] { 0x00000000, 0x00000001, 0x00000010, 0x00000011, 0x00000100, 0x00000101, 0x00000110, 0x00000111, 0x00001000, 0x00001001, 0x00001010, 0x00001011, 0x00001100, 0x00001101, 0x00001110, 0x00001111, 0x00010000, 0x00010001, 0x00010010, 0x00010011, 0x00010100, 0x00010101, 0x00010110, 0x00010111, 0x00011000, 0x00011001, 0x00011010, 0x00011011, 0x00011100, 0x00011101, 0x00011110, 0x00011111, 0x00100000, 0x00100001, 0x00100010, 0x00100011, 0x00100100, 0x00100101, 0x00100110, 0x00100111, 0x00101000, 0x00101001, 0x00101010, 0x00101011, 0x00101100, 0x00101101, 0x00101110, 0x00101111, 0x00110000, 0x00110001, 0x00110010, 0x00110011, 0x00110100, 0x00110101, 0x00110110, 0x00110111, 0x00111000, 0x00111001, 0x00111010, 0x00111011, 0x00111100, 0x00111101, 0x00111110, 0x00111111, 0x01000000, 0x01000001, 0x01000010, 0x01000011, 0x01000100, 0x01000101, 0x01000110, 0x01000111, 0x01001000, 0x01001001, 0x01001010, 0x01001011, 0x01001100, 0x01001101, 0x01001110, 0x01001111, 0x01010000, 0x01010001, 0x01010010, 0x01010011, 0x01010100, 0x01010101, 0x01010110, 0x01010111, 0x01011000, 0x01011001, 0x01011010, 0x01011011, 0x01011100, 0x01011101, 0x01011110, 0x01011111, 0x01100000, 0x01100001, 0x01100010, 0x01100011, 0x01100100, 0x01100101, 0x01100110, 0x01100111, 0x01101000, 0x01101001, 0x01101010, 0x01101011, 0x01101100, 0x01101101, 0x01101110, 0x01101111, 0x01110000, 0x01110001, 0x01110010, 0x01110011, 0x01110100, 0x01110101, 0x01110110, 0x01110111, 0x01111000, 0x01111001, 0x01111010, 0x01111011, 0x01111100, 0x01111101, 0x01111110, 0x01111111, 0x10000000, 0x10000001, 0x10000010, 0x10000011, 0x10000100, 0x10000101, 0x10000110, 0x10000111, 0x10001000, 0x10001001, 0x10001010, 0x10001011, 0x10001100, 0x10001101, 0x10001110, 0x10001111, 0x10010000, 0x10010001, 0x10010010, 0x10010011, 0x10010100, 0x10010101, 0x10010110, 0x10010111, 0x10011000, 0x10011001, 0x10011010, 0x10011011, 0x10011100, 0x10011101, 0x10011110, 0x10011111, 0x10100000, 0x10100001, 0x10100010, 0x10100011, 0x10100100, 0x10100101, 0x10100110, 0x10100111, 0x10101000, 0x10101001, 0x10101010, 0x10101011, 0x10101100, 0x10101101, 0x10101110, 0x10101111, 0x10110000, 0x10110001, 0x10110010, 0x10110011, 0x10110100, 0x10110101, 0x10110110, 0x10110111, 0x10111000, 0x10111001, 0x10111010, 0x10111011, 0x10111100, 0x10111101, 0x10111110, 0x10111111, 0x11000000, 0x11000001, 0x11000010, 0x11000011, 0x11000100, 0x11000101, 0x11000110, 0x11000111, 0x11001000, 0x11001001, 0x11001010, 0x11001011, 0x11001100, 0x11001101, 0x11001110, 0x11001111, 0x11010000, 0x11010001, 0x11010010, 0x11010011, 0x11010100, 0x11010101, 0x11010110, 0x11010111, 0x11011000, 0x11011001, 0x11011010, 0x11011011, 0x11011100, 0x11011101, 0x11011110, 0x11011111, 0x11100000, 0x11100001, 0x11100010, 0x11100011, 0x11100100, 0x11100101, 0x11100110, 0x11100111, 0x11101000, 0x11101001, 0x11101010, 0x11101011, 0x11101100, 0x11101101, 0x11101110, 0x11101111, 0x11110000, 0x11110001, 0x11110010, 0x11110011, 0x11110100, 0x11110101, 0x11110110, 0x11110111, 0x11111000, 0x11111001, 0x11111010, 0x11111011, 0x11111100, 0x11111101, 0x11111110, 0x11111111 }; /* * This expands 7 bit indices into 35 bit contents (high bit 30), by inserting 0s between bits. */ private static final int[] INTERLEAVE5_TABLE = new int[] { 0x00000000, 0x00000001, 0x00000020, 0x00000021, 0x00000400, 0x00000401, 0x00000420, 0x00000421, 0x00008000, 0x00008001, 0x00008020, 0x00008021, 0x00008400, 0x00008401, 0x00008420, 0x00008421, 0x00100000, 0x00100001, 0x00100020, 0x00100021, 0x00100400, 0x00100401, 0x00100420, 0x00100421, 0x00108000, 0x00108001, 0x00108020, 0x00108021, 0x00108400, 0x00108401, 0x00108420, 0x00108421, 0x02000000, 0x02000001, 0x02000020, 0x02000021, 0x02000400, 0x02000401, 0x02000420, 0x02000421, 0x02008000, 0x02008001, 0x02008020, 0x02008021, 0x02008400, 0x02008401, 0x02008420, 0x02008421, 0x02100000, 0x02100001, 0x02100020, 0x02100021, 0x02100400, 0x02100401, 0x02100420, 0x02100421, 0x02108000, 0x02108001, 0x02108020, 0x02108021, 0x02108400, 0x02108401, 0x02108420, 0x02108421, 0x40000000, 0x40000001, 0x40000020, 0x40000021, 0x40000400, 0x40000401, 0x40000420, 0x40000421, 0x40008000, 0x40008001, 0x40008020, 0x40008021, 0x40008400, 0x40008401, 0x40008420, 0x40008421, 0x40100000, 0x40100001, 0x40100020, 0x40100021, 0x40100400, 0x40100401, 0x40100420, 0x40100421, 0x40108000, 0x40108001, 0x40108020, 0x40108021, 0x40108400, 0x40108401, 0x40108420, 0x40108421, 0x42000000, 0x42000001, 0x42000020, 0x42000021, 0x42000400, 0x42000401, 0x42000420, 0x42000421, 0x42008000, 0x42008001, 0x42008020, 0x42008021, 0x42008400, 0x42008401, 0x42008420, 0x42008421, 0x42100000, 0x42100001, 0x42100020, 0x42100021, 0x42100400, 0x42100401, 0x42100420, 0x42100421, 0x42108000, 0x42108001, 0x42108020, 0x42108021, 0x42108400, 0x42108401, 0x42108420, 0x42108421 }; /* * This expands 9 bit indices into 63 bit (long) contents (high bit 56), by inserting 0s between bits. */ private static final long[] INTERLEAVE7_TABLE = new long[] { 0x0000000000000000L, 0x0000000000000001L, 0x0000000000000080L, 0x0000000000000081L, 0x0000000000004000L, 0x0000000000004001L, 0x0000000000004080L, 0x0000000000004081L, 0x0000000000200000L, 0x0000000000200001L, 0x0000000000200080L, 0x0000000000200081L, 0x0000000000204000L, 0x0000000000204001L, 0x0000000000204080L, 0x0000000000204081L, 0x0000000010000000L, 0x0000000010000001L, 0x0000000010000080L, 0x0000000010000081L, 0x0000000010004000L, 0x0000000010004001L, 0x0000000010004080L, 0x0000000010004081L, 0x0000000010200000L, 0x0000000010200001L, 0x0000000010200080L, 0x0000000010200081L, 0x0000000010204000L, 0x0000000010204001L, 0x0000000010204080L, 0x0000000010204081L, 0x0000000800000000L, 0x0000000800000001L, 0x0000000800000080L, 0x0000000800000081L, 0x0000000800004000L, 0x0000000800004001L, 0x0000000800004080L, 0x0000000800004081L, 0x0000000800200000L, 0x0000000800200001L, 0x0000000800200080L, 0x0000000800200081L, 0x0000000800204000L, 0x0000000800204001L, 0x0000000800204080L, 0x0000000800204081L, 0x0000000810000000L, 0x0000000810000001L, 0x0000000810000080L, 0x0000000810000081L, 0x0000000810004000L, 0x0000000810004001L, 0x0000000810004080L, 0x0000000810004081L, 0x0000000810200000L, 0x0000000810200001L, 0x0000000810200080L, 0x0000000810200081L, 0x0000000810204000L, 0x0000000810204001L, 0x0000000810204080L, 0x0000000810204081L, 0x0000040000000000L, 0x0000040000000001L, 0x0000040000000080L, 0x0000040000000081L, 0x0000040000004000L, 0x0000040000004001L, 0x0000040000004080L, 0x0000040000004081L, 0x0000040000200000L, 0x0000040000200001L, 0x0000040000200080L, 0x0000040000200081L, 0x0000040000204000L, 0x0000040000204001L, 0x0000040000204080L, 0x0000040000204081L, 0x0000040010000000L, 0x0000040010000001L, 0x0000040010000080L, 0x0000040010000081L, 0x0000040010004000L, 0x0000040010004001L, 0x0000040010004080L, 0x0000040010004081L, 0x0000040010200000L, 0x0000040010200001L, 0x0000040010200080L, 0x0000040010200081L, 0x0000040010204000L, 0x0000040010204001L, 0x0000040010204080L, 0x0000040010204081L, 0x0000040800000000L, 0x0000040800000001L, 0x0000040800000080L, 0x0000040800000081L, 0x0000040800004000L, 0x0000040800004001L, 0x0000040800004080L, 0x0000040800004081L, 0x0000040800200000L, 0x0000040800200001L, 0x0000040800200080L, 0x0000040800200081L, 0x0000040800204000L, 0x0000040800204001L, 0x0000040800204080L, 0x0000040800204081L, 0x0000040810000000L, 0x0000040810000001L, 0x0000040810000080L, 0x0000040810000081L, 0x0000040810004000L, 0x0000040810004001L, 0x0000040810004080L, 0x0000040810004081L, 0x0000040810200000L, 0x0000040810200001L, 0x0000040810200080L, 0x0000040810200081L, 0x0000040810204000L, 0x0000040810204001L, 0x0000040810204080L, 0x0000040810204081L, 0x0002000000000000L, 0x0002000000000001L, 0x0002000000000080L, 0x0002000000000081L, 0x0002000000004000L, 0x0002000000004001L, 0x0002000000004080L, 0x0002000000004081L, 0x0002000000200000L, 0x0002000000200001L, 0x0002000000200080L, 0x0002000000200081L, 0x0002000000204000L, 0x0002000000204001L, 0x0002000000204080L, 0x0002000000204081L, 0x0002000010000000L, 0x0002000010000001L, 0x0002000010000080L, 0x0002000010000081L, 0x0002000010004000L, 0x0002000010004001L, 0x0002000010004080L, 0x0002000010004081L, 0x0002000010200000L, 0x0002000010200001L, 0x0002000010200080L, 0x0002000010200081L, 0x0002000010204000L, 0x0002000010204001L, 0x0002000010204080L, 0x0002000010204081L, 0x0002000800000000L, 0x0002000800000001L, 0x0002000800000080L, 0x0002000800000081L, 0x0002000800004000L, 0x0002000800004001L, 0x0002000800004080L, 0x0002000800004081L, 0x0002000800200000L, 0x0002000800200001L, 0x0002000800200080L, 0x0002000800200081L, 0x0002000800204000L, 0x0002000800204001L, 0x0002000800204080L, 0x0002000800204081L, 0x0002000810000000L, 0x0002000810000001L, 0x0002000810000080L, 0x0002000810000081L, 0x0002000810004000L, 0x0002000810004001L, 0x0002000810004080L, 0x0002000810004081L, 0x0002000810200000L, 0x0002000810200001L, 0x0002000810200080L, 0x0002000810200081L, 0x0002000810204000L, 0x0002000810204001L, 0x0002000810204080L, 0x0002000810204081L, 0x0002040000000000L, 0x0002040000000001L, 0x0002040000000080L, 0x0002040000000081L, 0x0002040000004000L, 0x0002040000004001L, 0x0002040000004080L, 0x0002040000004081L, 0x0002040000200000L, 0x0002040000200001L, 0x0002040000200080L, 0x0002040000200081L, 0x0002040000204000L, 0x0002040000204001L, 0x0002040000204080L, 0x0002040000204081L, 0x0002040010000000L, 0x0002040010000001L, 0x0002040010000080L, 0x0002040010000081L, 0x0002040010004000L, 0x0002040010004001L, 0x0002040010004080L, 0x0002040010004081L, 0x0002040010200000L, 0x0002040010200001L, 0x0002040010200080L, 0x0002040010200081L, 0x0002040010204000L, 0x0002040010204001L, 0x0002040010204080L, 0x0002040010204081L, 0x0002040800000000L, 0x0002040800000001L, 0x0002040800000080L, 0x0002040800000081L, 0x0002040800004000L, 0x0002040800004001L, 0x0002040800004080L, 0x0002040800004081L, 0x0002040800200000L, 0x0002040800200001L, 0x0002040800200080L, 0x0002040800200081L, 0x0002040800204000L, 0x0002040800204001L, 0x0002040800204080L, 0x0002040800204081L, 0x0002040810000000L, 0x0002040810000001L, 0x0002040810000080L, 0x0002040810000081L, 0x0002040810004000L, 0x0002040810004001L, 0x0002040810004080L, 0x0002040810004081L, 0x0002040810200000L, 0x0002040810200001L, 0x0002040810200080L, 0x0002040810200081L, 0x0002040810204000L, 0x0002040810204001L, 0x0002040810204080L, 0x0002040810204081L, 0x0100000000000000L, 0x0100000000000001L, 0x0100000000000080L, 0x0100000000000081L, 0x0100000000004000L, 0x0100000000004001L, 0x0100000000004080L, 0x0100000000004081L, 0x0100000000200000L, 0x0100000000200001L, 0x0100000000200080L, 0x0100000000200081L, 0x0100000000204000L, 0x0100000000204001L, 0x0100000000204080L, 0x0100000000204081L, 0x0100000010000000L, 0x0100000010000001L, 0x0100000010000080L, 0x0100000010000081L, 0x0100000010004000L, 0x0100000010004001L, 0x0100000010004080L, 0x0100000010004081L, 0x0100000010200000L, 0x0100000010200001L, 0x0100000010200080L, 0x0100000010200081L, 0x0100000010204000L, 0x0100000010204001L, 0x0100000010204080L, 0x0100000010204081L, 0x0100000800000000L, 0x0100000800000001L, 0x0100000800000080L, 0x0100000800000081L, 0x0100000800004000L, 0x0100000800004001L, 0x0100000800004080L, 0x0100000800004081L, 0x0100000800200000L, 0x0100000800200001L, 0x0100000800200080L, 0x0100000800200081L, 0x0100000800204000L, 0x0100000800204001L, 0x0100000800204080L, 0x0100000800204081L, 0x0100000810000000L, 0x0100000810000001L, 0x0100000810000080L, 0x0100000810000081L, 0x0100000810004000L, 0x0100000810004001L, 0x0100000810004080L, 0x0100000810004081L, 0x0100000810200000L, 0x0100000810200001L, 0x0100000810200080L, 0x0100000810200081L, 0x0100000810204000L, 0x0100000810204001L, 0x0100000810204080L, 0x0100000810204081L, 0x0100040000000000L, 0x0100040000000001L, 0x0100040000000080L, 0x0100040000000081L, 0x0100040000004000L, 0x0100040000004001L, 0x0100040000004080L, 0x0100040000004081L, 0x0100040000200000L, 0x0100040000200001L, 0x0100040000200080L, 0x0100040000200081L, 0x0100040000204000L, 0x0100040000204001L, 0x0100040000204080L, 0x0100040000204081L, 0x0100040010000000L, 0x0100040010000001L, 0x0100040010000080L, 0x0100040010000081L, 0x0100040010004000L, 0x0100040010004001L, 0x0100040010004080L, 0x0100040010004081L, 0x0100040010200000L, 0x0100040010200001L, 0x0100040010200080L, 0x0100040010200081L, 0x0100040010204000L, 0x0100040010204001L, 0x0100040010204080L, 0x0100040010204081L, 0x0100040800000000L, 0x0100040800000001L, 0x0100040800000080L, 0x0100040800000081L, 0x0100040800004000L, 0x0100040800004001L, 0x0100040800004080L, 0x0100040800004081L, 0x0100040800200000L, 0x0100040800200001L, 0x0100040800200080L, 0x0100040800200081L, 0x0100040800204000L, 0x0100040800204001L, 0x0100040800204080L, 0x0100040800204081L, 0x0100040810000000L, 0x0100040810000001L, 0x0100040810000080L, 0x0100040810000081L, 0x0100040810004000L, 0x0100040810004001L, 0x0100040810004080L, 0x0100040810004081L, 0x0100040810200000L, 0x0100040810200001L, 0x0100040810200080L, 0x0100040810200081L, 0x0100040810204000L, 0x0100040810204001L, 0x0100040810204080L, 0x0100040810204081L, 0x0102000000000000L, 0x0102000000000001L, 0x0102000000000080L, 0x0102000000000081L, 0x0102000000004000L, 0x0102000000004001L, 0x0102000000004080L, 0x0102000000004081L, 0x0102000000200000L, 0x0102000000200001L, 0x0102000000200080L, 0x0102000000200081L, 0x0102000000204000L, 0x0102000000204001L, 0x0102000000204080L, 0x0102000000204081L, 0x0102000010000000L, 0x0102000010000001L, 0x0102000010000080L, 0x0102000010000081L, 0x0102000010004000L, 0x0102000010004001L, 0x0102000010004080L, 0x0102000010004081L, 0x0102000010200000L, 0x0102000010200001L, 0x0102000010200080L, 0x0102000010200081L, 0x0102000010204000L, 0x0102000010204001L, 0x0102000010204080L, 0x0102000010204081L, 0x0102000800000000L, 0x0102000800000001L, 0x0102000800000080L, 0x0102000800000081L, 0x0102000800004000L, 0x0102000800004001L, 0x0102000800004080L, 0x0102000800004081L, 0x0102000800200000L, 0x0102000800200001L, 0x0102000800200080L, 0x0102000800200081L, 0x0102000800204000L, 0x0102000800204001L, 0x0102000800204080L, 0x0102000800204081L, 0x0102000810000000L, 0x0102000810000001L, 0x0102000810000080L, 0x0102000810000081L, 0x0102000810004000L, 0x0102000810004001L, 0x0102000810004080L, 0x0102000810004081L, 0x0102000810200000L, 0x0102000810200001L, 0x0102000810200080L, 0x0102000810200081L, 0x0102000810204000L, 0x0102000810204001L, 0x0102000810204080L, 0x0102000810204081L, 0x0102040000000000L, 0x0102040000000001L, 0x0102040000000080L, 0x0102040000000081L, 0x0102040000004000L, 0x0102040000004001L, 0x0102040000004080L, 0x0102040000004081L, 0x0102040000200000L, 0x0102040000200001L, 0x0102040000200080L, 0x0102040000200081L, 0x0102040000204000L, 0x0102040000204001L, 0x0102040000204080L, 0x0102040000204081L, 0x0102040010000000L, 0x0102040010000001L, 0x0102040010000080L, 0x0102040010000081L, 0x0102040010004000L, 0x0102040010004001L, 0x0102040010004080L, 0x0102040010004081L, 0x0102040010200000L, 0x0102040010200001L, 0x0102040010200080L, 0x0102040010200081L, 0x0102040010204000L, 0x0102040010204001L, 0x0102040010204080L, 0x0102040010204081L, 0x0102040800000000L, 0x0102040800000001L, 0x0102040800000080L, 0x0102040800000081L, 0x0102040800004000L, 0x0102040800004001L, 0x0102040800004080L, 0x0102040800004081L, 0x0102040800200000L, 0x0102040800200001L, 0x0102040800200080L, 0x0102040800200081L, 0x0102040800204000L, 0x0102040800204001L, 0x0102040800204080L, 0x0102040800204081L, 0x0102040810000000L, 0x0102040810000001L, 0x0102040810000080L, 0x0102040810000081L, 0x0102040810004000L, 0x0102040810004001L, 0x0102040810004080L, 0x0102040810004081L, 0x0102040810200000L, 0x0102040810200001L, 0x0102040810200080L, 0x0102040810200081L, 0x0102040810204000L, 0x0102040810204001L, 0x0102040810204080L, 0x0102040810204081L }; // For toString(); must have length 64 private static final String ZEROES = "0000000000000000000000000000000000000000000000000000000000000000"; final static byte[] bitLengths = { 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 }; // TODO make m fixed for the LongArray, and hence compute T once and for all private long[] m_ints; public LongArray(int intLen) { m_ints = new long[intLen]; } public LongArray(long[] ints) { m_ints = ints; } public LongArray(long[] ints, int off, int len) { if (off == 0 && len == ints.length) { m_ints = ints; } else { m_ints = new long[len]; System.arraycopy(ints, off, m_ints, 0, len); } } public LongArray(BigInteger bigInt) { if (bigInt == null || bigInt.signum() < 0) { throw new IllegalArgumentException("invalid F2m field value"); } if (bigInt.signum() == 0) { m_ints = new long[] { 0L }; return; } byte[] barr = bigInt.toByteArray(); int barrLen = barr.length; int barrStart = 0; if (barr[0] == 0) { // First byte is 0 to enforce highest (=sign) bit is zero. // In this case ignore barr[0]. barrLen--; barrStart = 1; } int intLen = (barrLen + 7) / 8; m_ints = new long[intLen]; int iarrJ = intLen - 1; int rem = barrLen % 8 + barrStart; long temp = 0; int barrI = barrStart; if (barrStart < rem) { for (; barrI < rem; barrI++) { temp <<= 8; int barrBarrI = barr[barrI] & 0xFF; temp |= barrBarrI; } m_ints[iarrJ--] = temp; } for (; iarrJ >= 0; iarrJ--) { temp = 0; for (int i = 0; i < 8; i++) { temp <<= 8; int barrBarrI = barr[barrI++] & 0xFF; temp |= barrBarrI; } m_ints[iarrJ] = temp; } } public boolean isOne() { long[] a = m_ints; if (a[0] != 1L) { return false; } for (int i = 1; i < a.length; ++i) { if (a[i] != 0L) { return false; } } return true; } public boolean isZero() { long[] a = m_ints; for (int i = 0; i < a.length; ++i) { if (a[i] != 0L) { return false; } } return true; } public int getUsedLength() { return getUsedLengthFrom(m_ints.length); } public int getUsedLengthFrom(int from) { long[] a = m_ints; from = Math.min(from, a.length); if (from < 1) { return 0; } // Check if first element will act as sentinel if (a[0] != 0) { while (a[--from] == 0) { } return from + 1; } do { if (a[--from] != 0) { return from + 1; } } while (from > 0); return 0; } public int degree() { int i = m_ints.length; long w; do { if (i == 0) { return 0; } w = m_ints[--i]; } while (w == 0); return (i << 6) + bitLength(w); } private int degreeFrom(int limit) { int i = (limit + 62) >>> 6; long w; do { if (i == 0) { return 0; } w = m_ints[--i]; } while (w == 0); return (i << 6) + bitLength(w); } // private int lowestCoefficient() // { // for (int i = 0; i < m_ints.length; ++i) // { // long mi = m_ints[i]; // if (mi != 0) // { // int j = 0; // while ((mi & 0xFFL) == 0) // { // j += 8; // mi >>>= 8; // } // while ((mi & 1L) == 0) // { // ++j; // mi >>>= 1; // } // return (i << 6) + j; // } // } // return -1; // } private static int bitLength(long w) { int u = (int)(w >>> 32), b; if (u == 0) { u = (int)w; b = 0; } else { b = 32; } int t = u >>> 16, k; if (t == 0) { t = u >>> 8; k = (t == 0) ? bitLengths[u] : 8 + bitLengths[t]; } else { int v = t >>> 8; k = (v == 0) ? 16 + bitLengths[t] : 24 + bitLengths[v]; } return b + k; } private long[] resizedInts(int newLen) { long[] newInts = new long[newLen]; System.arraycopy(m_ints, 0, newInts, 0, Math.min(m_ints.length, newLen)); return newInts; } public BigInteger toBigInteger() { int usedLen = getUsedLength(); if (usedLen == 0) { return ECConstants.ZERO; } long highestInt = m_ints[usedLen - 1]; byte[] temp = new byte[8]; int barrI = 0; boolean trailingZeroBytesDone = false; for (int j = 7; j >= 0; j--) { byte thisByte = (byte)(highestInt >>> (8 * j)); if (trailingZeroBytesDone || (thisByte != 0)) { trailingZeroBytesDone = true; temp[barrI++] = thisByte; } } int barrLen = 8 * (usedLen - 1) + barrI; byte[] barr = new byte[barrLen]; for (int j = 0; j < barrI; j++) { barr[j] = temp[j]; } // Highest value int is done now for (int iarrJ = usedLen - 2; iarrJ >= 0; iarrJ--) { long mi = m_ints[iarrJ]; for (int j = 7; j >= 0; j--) { barr[barrI++] = (byte)(mi >>> (8 * j)); } } return new BigInteger(1, barr); } // private static long shiftUp(long[] x, int xOff, int count) // { // long prev = 0; // for (int i = 0; i < count; ++i) // { // long next = x[xOff + i]; // x[xOff + i] = (next << 1) | prev; // prev = next >>> 63; // } // return prev; // } private static long shiftUp(long[] x, int xOff, int count, int shift) { int shiftInv = 64 - shift; long prev = 0; for (int i = 0; i < count; ++i) { long next = x[xOff + i]; x[xOff + i] = (next << shift) | prev; prev = next >>> shiftInv; } return prev; } private static long shiftUp(long[] x, int xOff, long[] z, int zOff, int count, int shift) { int shiftInv = 64 - shift; long prev = 0; for (int i = 0; i < count; ++i) { long next = x[xOff + i]; z[zOff + i] = (next << shift) | prev; prev = next >>> shiftInv; } return prev; } public LongArray addOne() { if (m_ints.length == 0) { return new LongArray(new long[]{ 1L }); } int resultLen = Math.max(1, getUsedLength()); long[] ints = resizedInts(resultLen); ints[0] ^= 1L; return new LongArray(ints); } // private void addShiftedByBits(LongArray other, int bits) // { // int words = bits >>> 6; // int shift = bits & 0x3F; // // if (shift == 0) // { // addShiftedByWords(other, words); // return; // } // // int otherUsedLen = other.getUsedLength(); // if (otherUsedLen == 0) // { // return; // } // // int minLen = otherUsedLen + words + 1; // if (minLen > m_ints.length) // { // m_ints = resizedInts(minLen); // } // // long carry = addShiftedByBits(m_ints, words, other.m_ints, 0, otherUsedLen, shift); // m_ints[otherUsedLen + words] ^= carry; // } private void addShiftedByBitsSafe(LongArray other, int otherDegree, int bits) { int otherLen = (otherDegree + 63) >>> 6; int words = bits >>> 6; int shift = bits & 0x3F; if (shift == 0) { add(m_ints, words, other.m_ints, 0, otherLen); return; } long carry = addShiftedUp(m_ints, words, other.m_ints, 0, otherLen, shift); if (carry != 0L) { m_ints[otherLen + words] ^= carry; } } private static long addShiftedUp(long[] x, int xOff, long[] y, int yOff, int count, int shift) { int shiftInv = 64 - shift; long prev = 0; for (int i = 0; i < count; ++i) { long next = y[yOff + i]; x[xOff + i] ^= (next << shift) | prev; prev = next >>> shiftInv; } return prev; } private static long addShiftedDown(long[] x, int xOff, long[] y, int yOff, int count, int shift) { int shiftInv = 64 - shift; long prev = 0; int i = count; while (--i >= 0) { long next = y[yOff + i]; x[xOff + i] ^= (next >>> shift) | prev; prev = next << shiftInv; } return prev; } public void addShiftedByWords(LongArray other, int words) { int otherUsedLen = other.getUsedLength(); if (otherUsedLen == 0) { return; } int minLen = otherUsedLen + words; if (minLen > m_ints.length) { m_ints = resizedInts(minLen); } add(m_ints, words, other.m_ints, 0, otherUsedLen); } private static void add(long[] x, int xOff, long[] y, int yOff, int count) { for (int i = 0; i < count; ++i) { x[xOff + i] ^= y[yOff + i]; } } private static void add(long[] x, int xOff, long[] y, int yOff, long[] z, int zOff, int count) { for (int i = 0; i < count; ++i) { z[zOff + i] = x[xOff + i] ^ y[yOff + i]; } } private static void addBoth(long[] x, int xOff, long[] y1, int y1Off, long[] y2, int y2Off, int count) { for (int i = 0; i < count; ++i) { x[xOff + i] ^= y1[y1Off + i] ^ y2[y2Off + i]; } } private static void distribute(long[] x, int src, int dst1, int dst2, int count) { for (int i = 0; i < count; ++i) { long v = x[src + i]; x[dst1 + i] ^= v; x[dst2 + i] ^= v; } } public int getLength() { return m_ints.length; } private static void flipWord(long[] buf, int off, int bit, long word) { int n = off + (bit >>> 6); int shift = bit & 0x3F; if (shift == 0) { buf[n] ^= word; } else { buf[n] ^= word << shift; word >>>= (64 - shift); if (word != 0) { buf[++n] ^= word; } } } // private static long getWord(long[] buf, int off, int len, int bit) // { // int n = off + (bit >>> 6); // int shift = bit & 0x3F; // if (shift == 0) // { // return buf[n]; // } // long result = buf[n] >>> shift; // if (++n < len) // { // result |= buf[n] << (64 - shift); // } // return result; // } public boolean testBitZero() { return m_ints.length > 0 && (m_ints[0] & 1L) != 0; } private static boolean testBit(long[] buf, int off, int n) { // theInt = n / 64 int theInt = n >>> 6; // theBit = n % 64 int theBit = n & 0x3F; long tester = 1L << theBit; return (buf[off + theInt] & tester) != 0; } private static void flipBit(long[] buf, int off, int n) { // theInt = n / 64 int theInt = n >>> 6; // theBit = n % 64 int theBit = n & 0x3F; long flipper = 1L << theBit; buf[off + theInt] ^= flipper; } // private static void setBit(long[] buf, int off, int n) // { // // theInt = n / 64 // int theInt = n >>> 6; // // theBit = n % 64 // int theBit = n & 0x3F; // long setter = 1L << theBit; // buf[off + theInt] |= setter; // } // // private static void clearBit(long[] buf, int off, int n) // { // // theInt = n / 64 // int theInt = n >>> 6; // // theBit = n % 64 // int theBit = n & 0x3F; // long setter = 1L << theBit; // buf[off + theInt] &= ~setter; // } private static void multiplyWord(long a, long[] b, int bLen, long[] c, int cOff) { if ((a & 1L) != 0L) { add(c, cOff, b, 0, bLen); } int k = 1; while ((a >>>= 1) != 0L) { if ((a & 1L) != 0L) { long carry = addShiftedUp(c, cOff, b, 0, bLen, k); if (carry != 0L) { c[cOff + bLen] ^= carry; } } ++k; } } public LongArray modMultiplyLD(LongArray other, int m, int[] ks) { /* * Find out the degree of each argument and handle the zero cases */ int aDeg = degree(); if (aDeg == 0) { return this; } int bDeg = other.degree(); if (bDeg == 0) { return other; } /* * Swap if necessary so that A is the smaller argument */ LongArray A = this, B = other; if (aDeg > bDeg) { A = other; B = this; int tmp = aDeg; aDeg = bDeg; bDeg = tmp; } /* * Establish the word lengths of the arguments and result */ int aLen = (aDeg + 63) >>> 6; int bLen = (bDeg + 63) >>> 6; int cLen = (aDeg + bDeg + 62) >>> 6; if (aLen == 1) { long a0 = A.m_ints[0]; if (a0 == 1L) { return B; } /* * Fast path for small A, with performance dependent only on the number of set bits */ long[] c0 = new long[cLen]; multiplyWord(a0, B.m_ints, bLen, c0, 0); /* * Reduce the raw answer against the reduction coefficients */ return reduceResult(c0, 0, cLen, m, ks); } /* * Determine if B will get bigger during shifting */ int bMax = (bDeg + 7 + 63) >>> 6; /* * Lookup table for the offset of each B in the tables */ int[] ti = new int[16]; /* * Precompute table of all 4-bit products of B */ long[] T0 = new long[bMax << 4]; int tOff = bMax; ti[1] = tOff; System.arraycopy(B.m_ints, 0, T0, tOff, bLen); for (int i = 2; i < 16; ++i) { ti[i] = (tOff += bMax); if ((i & 1) == 0) { shiftUp(T0, tOff >>> 1, T0, tOff, bMax, 1); } else { add(T0, bMax, T0, tOff - bMax, T0, tOff, bMax); } } /* * Second table with all 4-bit products of B shifted 4 bits */ long[] T1 = new long[T0.length]; shiftUp(T0, 0, T1, 0, T0.length, 4); // shiftUp(T0, bMax, T1, bMax, tOff, 4); long[] a = A.m_ints; long[] c = new long[cLen]; int MASK = 0xF; /* * Lopez-Dahab algorithm */ for (int k = 56; k >= 0; k -= 8) { for (int j = 1; j < aLen; j += 2) { int aVal = (int)(a[j] >>> k); int u = aVal & MASK; int v = (aVal >>> 4) & MASK; addBoth(c, j - 1, T0, ti[u], T1, ti[v], bMax); } shiftUp(c, 0, cLen, 8); } for (int k = 56; k >= 0; k -= 8) { for (int j = 0; j < aLen; j += 2) { int aVal = (int)(a[j] >>> k); int u = aVal & MASK; int v = (aVal >>> 4) & MASK; addBoth(c, j, T0, ti[u], T1, ti[v], bMax); } if (k > 0) { shiftUp(c, 0, cLen, 8); } } /* * Finally the raw answer is collected, reduce it against the reduction coefficients */ return reduceResult(c, 0, cLen, m, ks); } public LongArray modMultiply(LongArray other, int m, int[] ks) { /* * Find out the degree of each argument and handle the zero cases */ int aDeg = degree(); if (aDeg == 0) { return this; } int bDeg = other.degree(); if (bDeg == 0) { return other; } /* * Swap if necessary so that A is the smaller argument */ LongArray A = this, B = other; if (aDeg > bDeg) { A = other; B = this; int tmp = aDeg; aDeg = bDeg; bDeg = tmp; } /* * Establish the word lengths of the arguments and result */ int aLen = (aDeg + 63) >>> 6; int bLen = (bDeg + 63) >>> 6; int cLen = (aDeg + bDeg + 62) >>> 6; if (aLen == 1) { long a0 = A.m_ints[0]; if (a0 == 1L) { return B; } /* * Fast path for small A, with performance dependent only on the number of set bits */ long[] c0 = new long[cLen]; multiplyWord(a0, B.m_ints, bLen, c0, 0); /* * Reduce the raw answer against the reduction coefficients */ return reduceResult(c0, 0, cLen, m, ks); } /* * Determine if B will get bigger during shifting */ int bMax = (bDeg + 7 + 63) >>> 6; /* * Lookup table for the offset of each B in the tables */ int[] ti = new int[16]; /* * Precompute table of all 4-bit products of B */ long[] T0 = new long[bMax << 4]; int tOff = bMax; ti[1] = tOff; System.arraycopy(B.m_ints, 0, T0, tOff, bLen); for (int i = 2; i < 16; ++i) { ti[i] = (tOff += bMax); if ((i & 1) == 0) { shiftUp(T0, tOff >>> 1, T0, tOff, bMax, 1); } else { add(T0, bMax, T0, tOff - bMax, T0, tOff, bMax); } } /* * Second table with all 4-bit products of B shifted 4 bits */ long[] T1 = new long[T0.length]; shiftUp(T0, 0, T1, 0, T0.length, 4); // shiftUp(T0, bMax, T1, bMax, tOff, 4); long[] a = A.m_ints; long[] c = new long[cLen << 3]; int MASK = 0xF; /* * Lopez-Dahab (Modified) algorithm */ for (int aPos = 0; aPos < aLen; ++aPos) { long aVal = a[aPos]; int cOff = aPos; for (;;) { int u = (int)aVal & MASK; aVal >>>= 4; int v = (int)aVal & MASK; addBoth(c, cOff, T0, ti[u], T1, ti[v], bMax); aVal >>>= 4; if (aVal == 0L) { break; } cOff += cLen; } } { int cOff = c.length; while ((cOff -= cLen) != 0) { addShiftedUp(c, cOff - cLen, c, cOff, cLen, 8); } } /* * Finally the raw answer is collected, reduce it against the reduction coefficients */ return reduceResult(c, 0, cLen, m, ks); } public LongArray modMultiplyAlt(LongArray other, int m, int[] ks) { /* * Find out the degree of each argument and handle the zero cases */ int aDeg = degree(); if (aDeg == 0) { return this; } int bDeg = other.degree(); if (bDeg == 0) { return other; } /* * Swap if necessary so that A is the smaller argument */ LongArray A = this, B = other; if (aDeg > bDeg) { A = other; B = this; int tmp = aDeg; aDeg = bDeg; bDeg = tmp; } /* * Establish the word lengths of the arguments and result */ int aLen = (aDeg + 63) >>> 6; int bLen = (bDeg + 63) >>> 6; int cLen = (aDeg + bDeg + 62) >>> 6; if (aLen == 1) { long a0 = A.m_ints[0]; if (a0 == 1L) { return B; } /* * Fast path for small A, with performance dependent only on the number of set bits */ long[] c0 = new long[cLen]; multiplyWord(a0, B.m_ints, bLen, c0, 0); /* * Reduce the raw answer against the reduction coefficients */ return reduceResult(c0, 0, cLen, m, ks); } // NOTE: This works, but is slower than width 4 processing // if (aLen == 2) // { // /* // * Use common-multiplicand optimization to save ~1/4 of the adds // */ // long a1 = A.m_ints[0], a2 = A.m_ints[1]; // long aa = a1 & a2; a1 ^= aa; a2 ^= aa; // // long[] b = B.m_ints; // long[] c = new long[cLen]; // multiplyWord(aa, b, bLen, c, 1); // add(c, 0, c, 1, cLen - 1); // multiplyWord(a1, b, bLen, c, 0); // multiplyWord(a2, b, bLen, c, 1); // // /* // * Reduce the raw answer against the reduction coefficients // */ // return reduceResult(c, 0, cLen, m, ks); // } /* * Determine the parameters of the interleaved window algorithm: the 'width' in bits to * process together, the number of evaluation 'positions' implied by that width, and the * 'top' position at which the regular window algorithm stops. */ int width, positions, top, banks; // NOTE: width 4 is the fastest over the entire range of sizes used in current crypto // width = 1; positions = 64; top = 64; banks = 4; // width = 2; positions = 32; top = 64; banks = 4; // width = 3; positions = 21; top = 63; banks = 3; width = 4; positions = 16; top = 64; banks = 8; // width = 5; positions = 13; top = 65; banks = 7; // width = 7; positions = 9; top = 63; banks = 9; // width = 8; positions = 8; top = 64; banks = 8; /* * Determine if B will get bigger during shifting */ int shifts = top < 64 ? positions : positions - 1; int bMax = (bDeg + shifts + 63) >>> 6; int bTotal = bMax * banks, stride = width * banks; /* * Create a single temporary buffer, with an offset table to find the positions of things in it */ int[] ci = new int[1 << width]; int cTotal = aLen; { ci[0] = cTotal; cTotal += bTotal; ci[1] = cTotal; for (int i = 2; i < ci.length; ++i) { cTotal += cLen; ci[i] = cTotal; } cTotal += cLen; } // NOTE: Provide a safe dump for "high zeroes" since we are adding 'bMax' and not 'bLen' ++cTotal; long[] c = new long[cTotal]; // Prepare A in interleaved form, according to the chosen width interleave(A.m_ints, 0, c, 0, aLen, width); // Make a working copy of B, since we will be shifting it { int bOff = aLen; System.arraycopy(B.m_ints, 0, c, bOff, bLen); for (int bank = 1; bank < banks; ++bank) { shiftUp(c, aLen, c, bOff += bMax, bMax, bank); } } /* * The main loop analyzes the interleaved windows in A, and for each non-zero window * a single word-array XOR is performed to a carefully selected slice of 'c'. The loop is * breadth-first, checking the lowest window in each word, then looping again for the * next higher window position. */ int MASK = (1 << width) - 1; int k = 0; for (;;) { int aPos = 0; do { long aVal = c[aPos] >>> k; int bank = 0, bOff = aLen; for (;;) { int index = (int)(aVal) & MASK; if (index != 0) { /* * Add to a 'c' buffer based on the bit-pattern of 'index'. Since A is in * interleaved form, the bits represent the current B shifted by 0, 'positions', * 'positions' * 2, ..., 'positions' * ('width' - 1) */ add(c, aPos + ci[index], c, bOff, bMax); } if (++bank == banks) { break; } bOff += bMax; aVal >>>= width; } } while (++aPos < aLen); if ((k += stride) >= top) { if (k >= 64) { break; } /* * Adjustment for window setups with top == 63, the final bit (if any) is processed * as the top-bit of a window */ k = 64 - width; MASK &= MASK << (top - k); } /* * After each position has been checked for all words of A, B is shifted up 1 place */ shiftUp(c, aLen, bTotal, banks); } int ciPos = ci.length; while (--ciPos > 1) { if ((ciPos & 1L) == 0L) { /* * For even numbers, shift contents and add to the half-position */ addShiftedUp(c, ci[ciPos >>> 1], c, ci[ciPos], cLen, positions); } else { /* * For odd numbers, 'distribute' contents to the result and the next-lowest position */ distribute(c, ci[ciPos], ci[ciPos - 1], ci[1], cLen); } } /* * Finally the raw answer is collected, reduce it against the reduction coefficients */ return reduceResult(c, ci[1], cLen, m, ks); } public LongArray modReduce(int m, int[] ks) { long[] buf = Arrays.clone(m_ints); int rLen = reduceInPlace(buf, 0, buf.length, m, ks); return new LongArray(buf, 0, rLen); } public LongArray multiply(LongArray other, int m, int[] ks) { /* * Find out the degree of each argument and handle the zero cases */ int aDeg = degree(); if (aDeg == 0) { return this; } int bDeg = other.degree(); if (bDeg == 0) { return other; } /* * Swap if necessary so that A is the smaller argument */ LongArray A = this, B = other; if (aDeg > bDeg) { A = other; B = this; int tmp = aDeg; aDeg = bDeg; bDeg = tmp; } /* * Establish the word lengths of the arguments and result */ int aLen = (aDeg + 63) >>> 6; int bLen = (bDeg + 63) >>> 6; int cLen = (aDeg + bDeg + 62) >>> 6; if (aLen == 1) { long a0 = A.m_ints[0]; if (a0 == 1L) { return B; } /* * Fast path for small A, with performance dependent only on the number of set bits */ long[] c0 = new long[cLen]; multiplyWord(a0, B.m_ints, bLen, c0, 0); /* * Reduce the raw answer against the reduction coefficients */ // return reduceResult(c0, 0, cLen, m, ks); return new LongArray(c0, 0, cLen); } /* * Determine if B will get bigger during shifting */ int bMax = (bDeg + 7 + 63) >>> 6; /* * Lookup table for the offset of each B in the tables */ int[] ti = new int[16]; /* * Precompute table of all 4-bit products of B */ long[] T0 = new long[bMax << 4]; int tOff = bMax; ti[1] = tOff; System.arraycopy(B.m_ints, 0, T0, tOff, bLen); for (int i = 2; i < 16; ++i) { ti[i] = (tOff += bMax); if ((i & 1) == 0) { shiftUp(T0, tOff >>> 1, T0, tOff, bMax, 1); } else { add(T0, bMax, T0, tOff - bMax, T0, tOff, bMax); } } /* * Second table with all 4-bit products of B shifted 4 bits */ long[] T1 = new long[T0.length]; shiftUp(T0, 0, T1, 0, T0.length, 4); // shiftUp(T0, bMax, T1, bMax, tOff, 4); long[] a = A.m_ints; long[] c = new long[cLen << 3]; int MASK = 0xF; /* * Lopez-Dahab (Modified) algorithm */ for (int aPos = 0; aPos < aLen; ++aPos) { long aVal = a[aPos]; int cOff = aPos; for (;;) { int u = (int)aVal & MASK; aVal >>>= 4; int v = (int)aVal & MASK; addBoth(c, cOff, T0, ti[u], T1, ti[v], bMax); aVal >>>= 4; if (aVal == 0L) { break; } cOff += cLen; } } { int cOff = c.length; while ((cOff -= cLen) != 0) { addShiftedUp(c, cOff - cLen, c, cOff, cLen, 8); } } /* * Finally the raw answer is collected, reduce it against the reduction coefficients */ // return reduceResult(c, 0, cLen, m, ks); return new LongArray(c, 0, cLen); } public void reduce(int m, int[] ks) { long[] buf = m_ints; int rLen = reduceInPlace(buf, 0, buf.length, m, ks); if (rLen < buf.length) { m_ints = new long[rLen]; System.arraycopy(buf, 0, m_ints, 0, rLen); } } private static LongArray reduceResult(long[] buf, int off, int len, int m, int[] ks) { int rLen = reduceInPlace(buf, off, len, m, ks); return new LongArray(buf, off, rLen); } // private static void deInterleave(long[] x, int xOff, long[] z, int zOff, int count, int rounds) // { // for (int i = 0; i < count; ++i) // { // z[zOff + i] = deInterleave(x[zOff + i], rounds); // } // } // // private static long deInterleave(long x, int rounds) // { // while (--rounds >= 0) // { // x = deInterleave32(x & DEINTERLEAVE_MASK) | (deInterleave32((x >>> 1) & DEINTERLEAVE_MASK) << 32); // } // return x; // } // // private static long deInterleave32(long x) // { // x = (x | (x >>> 1)) & 0x3333333333333333L; // x = (x | (x >>> 2)) & 0x0F0F0F0F0F0F0F0FL; // x = (x | (x >>> 4)) & 0x00FF00FF00FF00FFL; // x = (x | (x >>> 8)) & 0x0000FFFF0000FFFFL; // x = (x | (x >>> 16)) & 0x00000000FFFFFFFFL; // return x; // } private static int reduceInPlace(long[] buf, int off, int len, int m, int[] ks) { int mLen = (m + 63) >>> 6; if (len < mLen) { return len; } int numBits = Math.min(len << 6, (m << 1) - 1); // TODO use actual degree? int excessBits = (len << 6) - numBits; while (excessBits >= 64) { --len; excessBits -= 64; } int kLen = ks.length, kMax = ks[kLen - 1], kNext = kLen > 1 ? ks[kLen - 2] : 0; int wordWiseLimit = Math.max(m, kMax + 64); int vectorableWords = (excessBits + Math.min(numBits - wordWiseLimit, m - kNext)) >> 6; if (vectorableWords > 1) { int vectorWiseWords = len - vectorableWords; reduceVectorWise(buf, off, len, vectorWiseWords, m, ks); while (len > vectorWiseWords) { buf[off + --len] = 0L; } numBits = vectorWiseWords << 6; } if (numBits > wordWiseLimit) { reduceWordWise(buf, off, len, wordWiseLimit, m, ks); numBits = wordWiseLimit; } if (numBits > m) { reduceBitWise(buf, off, numBits, m, ks); } return mLen; } private static void reduceBitWise(long[] buf, int off, int bitlength, int m, int[] ks) { while (--bitlength >= m) { if (testBit(buf, off, bitlength)) { reduceBit(buf, off, bitlength, m, ks); } } } private static void reduceBit(long[] buf, int off, int bit, int m, int[] ks) { flipBit(buf, off, bit); int n = bit - m; int j = ks.length; while (--j >= 0) { flipBit(buf, off, ks[j] + n); } flipBit(buf, off, n); } private static void reduceWordWise(long[] buf, int off, int len, int toBit, int m, int[] ks) { int toPos = toBit >>> 6; while (--len > toPos) { long word = buf[off + len]; if (word != 0) { buf[off + len] = 0; reduceWord(buf, off, (len << 6), word, m, ks); } } { int partial = toBit & 0x3F; long word = buf[off + toPos] >>> partial; if (word != 0) { buf[off + toPos] ^= word << partial; reduceWord(buf, off, toBit, word, m, ks); } } } private static void reduceWord(long[] buf, int off, int bit, long word, int m, int[] ks) { int offset = bit - m; int j = ks.length; while (--j >= 0) { flipWord(buf, off, offset + ks[j], word); } flipWord(buf, off, offset, word); } private static void reduceVectorWise(long[] buf, int off, int len, int words, int m, int[] ks) { /* * NOTE: It's important we go from highest coefficient to lowest, because for the highest * one (only) we allow the ranges to partially overlap, and therefore any changes must take * effect for the subsequent lower coefficients. */ int baseBit = (words << 6) - m; int j = ks.length; while (--j >= 0) { flipVector(buf, off, buf, off + words, len - words, baseBit + ks[j]); } flipVector(buf, off, buf, off + words, len - words, baseBit); } private static void flipVector(long[] x, int xOff, long[] y, int yOff, int yLen, int bits) { xOff += bits >>> 6; bits &= 0x3F; if (bits == 0) { add(x, xOff, y, yOff, yLen); } else { long carry = addShiftedDown(x, xOff + 1, y, yOff, yLen, 64 - bits); x[xOff] ^= carry; } } public LongArray modSquare(int m, int[] ks) { int len = getUsedLength(); if (len == 0) { return this; } int _2len = len << 1; long[] r = new long[_2len]; int pos = 0; while (pos < _2len) { long mi = m_ints[pos >>> 1]; r[pos++] = interleave2_32to64((int)mi); r[pos++] = interleave2_32to64((int)(mi >>> 32)); } return new LongArray(r, 0, reduceInPlace(r, 0, r.length, m, ks)); } public LongArray modSquareN(int n, int m, int[] ks) { int len = getUsedLength(); if (len == 0) { return this; } int mLen = (m + 63) >>> 6; long[] r = new long[mLen << 1]; System.arraycopy(m_ints, 0, r, 0, len); while (--n >= 0) { squareInPlace(r, len, m, ks); len = reduceInPlace(r, 0, r.length, m, ks); } return new LongArray(r, 0, len); } public LongArray square(int m, int[] ks) { int len = getUsedLength(); if (len == 0) { return this; } int _2len = len << 1; long[] r = new long[_2len]; int pos = 0; while (pos < _2len) { long mi = m_ints[pos >>> 1]; r[pos++] = interleave2_32to64((int)mi); r[pos++] = interleave2_32to64((int)(mi >>> 32)); } return new LongArray(r, 0, r.length); } private static void squareInPlace(long[] x, int xLen, int m, int[] ks) { int pos = xLen << 1; while (--xLen >= 0) { long xVal = x[xLen]; x[--pos] = interleave2_32to64((int)(xVal >>> 32)); x[--pos] = interleave2_32to64((int)xVal); } } private static void interleave(long[] x, int xOff, long[] z, int zOff, int count, int width) { switch (width) { case 3: interleave3(x, xOff, z, zOff, count); break; case 5: interleave5(x, xOff, z, zOff, count); break; case 7: interleave7(x, xOff, z, zOff, count); break; default: interleave2_n(x, xOff, z, zOff, count, bitLengths[width] - 1); break; } } private static void interleave3(long[] x, int xOff, long[] z, int zOff, int count) { for (int i = 0; i < count; ++i) { z[zOff + i] = interleave3(x[xOff + i]); } } private static long interleave3(long x) { long z = x & (1L << 63); return z | interleave3_21to63((int)x & 0x1FFFFF) | interleave3_21to63((int)(x >>> 21) & 0x1FFFFF) << 1 | interleave3_21to63((int)(x >>> 42) & 0x1FFFFF) << 2; // int zPos = 0, wPos = 0, xPos = 0; // for (;;) // { // z |= ((x >>> xPos) & 1L) << zPos; // if (++zPos == 63) // { // String sz2 = Long.toBinaryString(z); // return z; // } // if ((xPos += 21) >= 63) // { // xPos = ++wPos; // } // } } private static long interleave3_21to63(int x) { int r00 = INTERLEAVE3_TABLE[x & 0x7F]; int r21 = INTERLEAVE3_TABLE[(x >>> 7) & 0x7F]; int r42 = INTERLEAVE3_TABLE[x >>> 14]; return (r42 & 0xFFFFFFFFL) << 42 | (r21 & 0xFFFFFFFFL) << 21 | (r00 & 0xFFFFFFFFL); } private static void interleave5(long[] x, int xOff, long[] z, int zOff, int count) { for (int i = 0; i < count; ++i) { z[zOff + i] = interleave5(x[xOff + i]); } } private static long interleave5(long x) { return interleave3_13to65((int)x & 0x1FFF) | interleave3_13to65((int)(x >>> 13) & 0x1FFF) << 1 | interleave3_13to65((int)(x >>> 26) & 0x1FFF) << 2 | interleave3_13to65((int)(x >>> 39) & 0x1FFF) << 3 | interleave3_13to65((int)(x >>> 52) & 0x1FFF) << 4; // long z = 0; // int zPos = 0, wPos = 0, xPos = 0; // for (;;) // { // z |= ((x >>> xPos) & 1L) << zPos; // if (++zPos == 64) // { // return z; // } // if ((xPos += 13) >= 64) // { // xPos = ++wPos; // } // } } private static long interleave3_13to65(int x) { int r00 = INTERLEAVE5_TABLE[x & 0x7F]; int r35 = INTERLEAVE5_TABLE[x >>> 7]; return (r35 & 0xFFFFFFFFL) << 35 | (r00 & 0xFFFFFFFFL); } private static void interleave7(long[] x, int xOff, long[] z, int zOff, int count) { for (int i = 0; i < count; ++i) { z[zOff + i] = interleave7(x[xOff + i]); } } private static long interleave7(long x) { long z = x & (1L << 63); return z | INTERLEAVE7_TABLE[(int)x & 0x1FF] | INTERLEAVE7_TABLE[(int)(x >>> 9) & 0x1FF] << 1 | INTERLEAVE7_TABLE[(int)(x >>> 18) & 0x1FF] << 2 | INTERLEAVE7_TABLE[(int)(x >>> 27) & 0x1FF] << 3 | INTERLEAVE7_TABLE[(int)(x >>> 36) & 0x1FF] << 4 | INTERLEAVE7_TABLE[(int)(x >>> 45) & 0x1FF] << 5 | INTERLEAVE7_TABLE[(int)(x >>> 54) & 0x1FF] << 6; // int zPos = 0, wPos = 0, xPos = 0; // for (;;) // { // z |= ((x >>> xPos) & 1L) << zPos; // if (++zPos == 63) // { // return z; // } // if ((xPos += 9) >= 63) // { // xPos = ++wPos; // } // } } private static void interleave2_n(long[] x, int xOff, long[] z, int zOff, int count, int rounds) { for (int i = 0; i < count; ++i) { z[zOff + i] = interleave2_n(x[xOff + i], rounds); } } private static long interleave2_n(long x, int rounds) { while (rounds > 1) { rounds -= 2; x = interleave4_16to64((int)x & 0xFFFF) | interleave4_16to64((int)(x >>> 16) & 0xFFFF) << 1 | interleave4_16to64((int)(x >>> 32) & 0xFFFF) << 2 | interleave4_16to64((int)(x >>> 48) & 0xFFFF) << 3; } if (rounds > 0) { x = interleave2_32to64((int)x) | interleave2_32to64((int)(x >>> 32)) << 1; } return x; } private static long interleave4_16to64(int x) { int r00 = INTERLEAVE4_TABLE[x & 0xFF]; int r32 = INTERLEAVE4_TABLE[x >>> 8]; return (r32 & 0xFFFFFFFFL) << 32 | (r00 & 0xFFFFFFFFL); } private static long interleave2_32to64(int x) { int r00 = INTERLEAVE2_TABLE[x & 0xFF] | INTERLEAVE2_TABLE[(x >>> 8) & 0xFF] << 16; int r32 = INTERLEAVE2_TABLE[(x >>> 16) & 0xFF] | INTERLEAVE2_TABLE[x >>> 24] << 16; return (r32 & 0xFFFFFFFFL) << 32 | (r00 & 0xFFFFFFFFL); } // private static LongArray expItohTsujii2(LongArray B, int n, int m, int[] ks) // { // LongArray t1 = B, t3 = new LongArray(new long[]{ 1L }); // int scale = 1; // // int numTerms = n; // while (numTerms > 1) // { // if ((numTerms & 1) != 0) // { // t3 = t3.modMultiply(t1, m, ks); // t1 = t1.modSquareN(scale, m, ks); // } // // LongArray t2 = t1.modSquareN(scale, m, ks); // t1 = t1.modMultiply(t2, m, ks); // numTerms >>>= 1; scale <<= 1; // } // // return t3.modMultiply(t1, m, ks); // } // // private static LongArray expItohTsujii23(LongArray B, int n, int m, int[] ks) // { // LongArray t1 = B, t3 = new LongArray(new long[]{ 1L }); // int scale = 1; // // int numTerms = n; // while (numTerms > 1) // { // boolean m03 = numTerms % 3 == 0; // boolean m14 = !m03 && (numTerms & 1) != 0; // // if (m14) // { // t3 = t3.modMultiply(t1, m, ks); // t1 = t1.modSquareN(scale, m, ks); // } // // LongArray t2 = t1.modSquareN(scale, m, ks); // t1 = t1.modMultiply(t2, m, ks); // // if (m03) // { // t2 = t2.modSquareN(scale, m, ks); // t1 = t1.modMultiply(t2, m, ks); // numTerms /= 3; scale *= 3; // } // else // { // numTerms >>>= 1; scale <<= 1; // } // } // // return t3.modMultiply(t1, m, ks); // } // // private static LongArray expItohTsujii235(LongArray B, int n, int m, int[] ks) // { // LongArray t1 = B, t4 = new LongArray(new long[]{ 1L }); // int scale = 1; // // int numTerms = n; // while (numTerms > 1) // { // if (numTerms % 5 == 0) // { //// t1 = expItohTsujii23(t1, 5, m, ks); // // LongArray t3 = t1; // t1 = t1.modSquareN(scale, m, ks); // // LongArray t2 = t1.modSquareN(scale, m, ks); // t1 = t1.modMultiply(t2, m, ks); // t2 = t1.modSquareN(scale << 1, m, ks); // t1 = t1.modMultiply(t2, m, ks); // // t1 = t1.modMultiply(t3, m, ks); // // numTerms /= 5; scale *= 5; // continue; // } // // boolean m03 = numTerms % 3 == 0; // boolean m14 = !m03 && (numTerms & 1) != 0; // // if (m14) // { // t4 = t4.modMultiply(t1, m, ks); // t1 = t1.modSquareN(scale, m, ks); // } // // LongArray t2 = t1.modSquareN(scale, m, ks); // t1 = t1.modMultiply(t2, m, ks); // // if (m03) // { // t2 = t2.modSquareN(scale, m, ks); // t1 = t1.modMultiply(t2, m, ks); // numTerms /= 3; scale *= 3; // } // else // { // numTerms >>>= 1; scale <<= 1; // } // } // // return t4.modMultiply(t1, m, ks); // } public LongArray modInverse(int m, int[] ks) { /* * Fermat's Little Theorem */ // LongArray A = this; // LongArray B = A.modSquare(m, ks); // LongArray R0 = B, R1 = B; // for (int i = 2; i < m; ++i) // { // R1 = R1.modSquare(m, ks); // R0 = R0.modMultiply(R1, m, ks); // } // // return R0; /* * Itoh-Tsujii */ // LongArray B = modSquare(m, ks); // switch (m) // { // case 409: // return expItohTsujii23(B, m - 1, m, ks); // case 571: // return expItohTsujii235(B, m - 1, m, ks); // case 163: // case 233: // case 283: // default: // return expItohTsujii2(B, m - 1, m, ks); // } /* * Inversion in F2m using the extended Euclidean algorithm * * Input: A nonzero polynomial a(z) of degree at most m-1 * Output: a(z)^(-1) mod f(z) */ int uzDegree = degree(); if (uzDegree == 0) { throw new IllegalStateException(); } if (uzDegree == 1) { return this; } // u(z) := a(z) LongArray uz = (LongArray)clone(); int t = (m + 63) >>> 6; // v(z) := f(z) LongArray vz = new LongArray(t); reduceBit(vz.m_ints, 0, m, m, ks); // g1(z) := 1, g2(z) := 0 LongArray g1z = new LongArray(t); g1z.m_ints[0] = 1L; LongArray g2z = new LongArray(t); int[] uvDeg = new int[]{ uzDegree, m + 1 }; LongArray[] uv = new LongArray[]{ uz, vz }; int[] ggDeg = new int[]{ 1, 0 }; LongArray[] gg = new LongArray[]{ g1z, g2z }; int b = 1; int duv1 = uvDeg[b]; int dgg1 = ggDeg[b]; int j = duv1 - uvDeg[1 - b]; for (;;) { if (j < 0) { j = -j; uvDeg[b] = duv1; ggDeg[b] = dgg1; b = 1 - b; duv1 = uvDeg[b]; dgg1 = ggDeg[b]; } uv[b].addShiftedByBitsSafe(uv[1 - b], uvDeg[1 - b], j); int duv2 = uv[b].degreeFrom(duv1); if (duv2 == 0) { return gg[1 - b]; } { int dgg2 = ggDeg[1 - b]; gg[b].addShiftedByBitsSafe(gg[1 - b], dgg2, j); dgg2 += j; if (dgg2 > dgg1) { dgg1 = dgg2; } else if (dgg2 == dgg1) { dgg1 = gg[b].degreeFrom(dgg1); } } j += (duv2 - duv1); duv1 = duv2; } } public boolean equals(Object o) { if (!(o instanceof LongArray)) { return false; } LongArray other = (LongArray) o; int usedLen = getUsedLength(); if (other.getUsedLength() != usedLen) { return false; } for (int i = 0; i < usedLen; i++) { if (m_ints[i] != other.m_ints[i]) { return false; } } return true; } public int hashCode() { int usedLen = getUsedLength(); int hash = 1; for (int i = 0; i < usedLen; i++) { long mi = m_ints[i]; hash *= 31; hash ^= (int)mi; hash *= 31; hash ^= (int)(mi >>> 32); } return hash; } public Object clone() { return new LongArray(Arrays.clone(m_ints)); } public String toString() { int i = getUsedLength(); if (i == 0) { return "0"; } StringBuffer sb = new StringBuffer(Long.toBinaryString(m_ints[--i])); while (--i >= 0) { String s = Long.toBinaryString(m_ints[i]); // Add leading zeroes, except for highest significant word int len = s.length(); if (len < 64) { sb.append(ZEROES.substring(len)); } sb.append(s); } return sb.toString(); } }