/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.perceptron; import static opennlp.PrepAttachDataUtil.createTrainingStream; import static opennlp.PrepAttachDataUtil.testModel; import java.io.IOException; import java.util.HashMap; import java.util.Map; import opennlp.model.AbstractModel; import opennlp.model.TrainUtil; import opennlp.model.TwoPassDataIndexer; import org.junit.Test; /** * Test for perceptron training and use with the ppa data. */ public class PerceptronPrepAttachTest { @Test public void testPerceptronOnPrepAttachData() throws IOException { AbstractModel model = new PerceptronTrainer().trainModel(400, new TwoPassDataIndexer(createTrainingStream(), 1, false), 1); testModel(model, 0.7650408516959644); } @Test public void testPerceptronOnPrepAttachDataWithSkippedAveraging() throws IOException { Map<String, String> trainParams = new HashMap<String, String>(); trainParams.put(TrainUtil.ALGORITHM_PARAM, TrainUtil.PERCEPTRON_VALUE); trainParams.put(TrainUtil.CUTOFF_PARAM, Integer.toString(1)); trainParams.put("UseSkippedAveraging", Boolean.toString(true)); AbstractModel model = TrainUtil.train(createTrainingStream(), trainParams, null); testModel(model, 0.773706362961129); } @Test public void testPerceptronOnPrepAttachDataWithTolerance() throws IOException { Map<String, String> trainParams = new HashMap<String, String>(); trainParams.put(TrainUtil.ALGORITHM_PARAM, TrainUtil.PERCEPTRON_VALUE); trainParams.put(TrainUtil.CUTOFF_PARAM, Integer.toString(1)); trainParams.put(TrainUtil.ITERATIONS_PARAM, Integer.toString(500)); trainParams.put("Tolerance", Double.toString(0.0001d)); AbstractModel model = TrainUtil.train(createTrainingStream(), trainParams, null); testModel(model, 0.7677642980935875); } @Test public void testPerceptronOnPrepAttachDataWithStepSizeDecrease() throws IOException { Map<String, String> trainParams = new HashMap<String, String>(); trainParams.put(TrainUtil.ALGORITHM_PARAM, TrainUtil.PERCEPTRON_VALUE); trainParams.put(TrainUtil.CUTOFF_PARAM, Integer.toString(1)); trainParams.put(TrainUtil.ITERATIONS_PARAM, Integer.toString(500)); trainParams.put("StepSizeDecrease", Double.toString(0.06d)); AbstractModel model = TrainUtil.train(createTrainingStream(), trainParams, null); testModel(model, 0.7756870512503095); } }