/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package opennlp.perceptron; import java.io.IOException; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import opennlp.model.AbstractModelWriter; import opennlp.model.ComparablePredicate; import opennlp.model.Context; import opennlp.model.IndexHashTable; import opennlp.model.MaxentModel; /** * Abstract parent class for Perceptron writers. It provides the persist method * which takes care of the structure of a stored document, and requires an * extending class to define precisely how the data should be stored. * */ public abstract class PerceptronModelWriter extends AbstractModelWriter { protected Context[] PARAMS; protected String[] OUTCOME_LABELS; protected String[] PRED_LABELS; int numOutcomes; public PerceptronModelWriter (MaxentModel model) { Object[] data = model.getDataStructures(); this.numOutcomes = model.getNumOutcomes(); PARAMS = (Context[]) data[0]; IndexHashTable<String> pmap = (IndexHashTable<String>) data[1]; OUTCOME_LABELS = (String[])data[2]; PRED_LABELS = new String[pmap.size()]; pmap.toArray(PRED_LABELS); } protected ComparablePredicate[] sortValues () { ComparablePredicate[] sortPreds; ComparablePredicate[] tmpPreds = new ComparablePredicate[PARAMS.length]; int[] tmpOutcomes = new int[numOutcomes]; double[] tmpParams = new double[numOutcomes]; int numPreds = 0; //remove parameters with 0 weight and predicates with no parameters for (int pid=0; pid<PARAMS.length; pid++) { int numParams = 0; double[] predParams = PARAMS[pid].getParameters(); int[] outcomePattern = PARAMS[pid].getOutcomes(); for (int pi=0;pi<predParams.length;pi++) { if (predParams[pi] != 0d) { tmpOutcomes[numParams]=outcomePattern[pi]; tmpParams[numParams]=predParams[pi]; numParams++; } } int[] activeOutcomes = new int[numParams]; double[] activeParams = new double[numParams]; for (int pi=0;pi<numParams;pi++) { activeOutcomes[pi] = tmpOutcomes[pi]; activeParams[pi] = tmpParams[pi]; } if (numParams != 0) { tmpPreds[numPreds] = new ComparablePredicate(PRED_LABELS[pid],activeOutcomes,activeParams); numPreds++; } } System.err.println("Compressed "+PARAMS.length+" parameters to "+numPreds); sortPreds = new ComparablePredicate[numPreds]; for (int pid=0;pid<numPreds;pid++) { sortPreds[pid] = tmpPreds[pid]; } Arrays.sort(sortPreds); return sortPreds; } protected List<List<ComparablePredicate>> computeOutcomePatterns(ComparablePredicate[] sorted) { ComparablePredicate cp = sorted[0]; List<List<ComparablePredicate>> outcomePatterns = new ArrayList<List<ComparablePredicate>>(); List<ComparablePredicate> newGroup = new ArrayList<ComparablePredicate>(); for (int i=0; i<sorted.length; i++) { if (cp.compareTo(sorted[i]) == 0) { newGroup.add(sorted[i]); } else { cp = sorted[i]; outcomePatterns.add(newGroup); newGroup = new ArrayList<ComparablePredicate>(); newGroup.add(sorted[i]); } } outcomePatterns.add(newGroup); System.err.println(outcomePatterns.size()+" outcome patterns"); return outcomePatterns; } /** * Writes the model to disk, using the <code>writeX()</code> methods * provided by extending classes. * * <p>If you wish to create a PerceptronModelWriter which uses a different * structure, it will be necessary to override the persist method in * addition to implementing the <code>writeX()</code> methods. */ public void persist() throws IOException { // the type of model (Perceptron) writeUTF("Perceptron"); // the mapping from outcomes to their integer indexes writeInt(OUTCOME_LABELS.length); for (int i=0; i<OUTCOME_LABELS.length; i++) writeUTF(OUTCOME_LABELS[i]); // the mapping from predicates to the outcomes they contributed to. // The sorting is done so that we actually can write this out more // compactly than as the entire list. ComparablePredicate[] sorted = sortValues(); List<List<ComparablePredicate>> compressed = computeOutcomePatterns(sorted); writeInt(compressed.size()); for (int i=0; i<compressed.size(); i++) { List<ComparablePredicate> a = compressed.get(i); writeUTF(a.size() + a.get(0).toString()); } // the mapping from predicate names to their integer indexes writeInt(sorted.length); for (int i=0; i<sorted.length; i++) writeUTF(sorted[i].name); // write out the parameters for (int i=0; i<sorted.length; i++) for (int j=0; j<sorted[i].params.length; j++) writeDouble(sorted[i].params[j]); close(); } }