/* * $RCSfile$ * * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * $Revision$ * $Date$ * $State$ */ package com.android.droidgraph.vecmath; import java.lang.Math; /** * A double precision, general, dynamically-resizable, * one-dimensional vector class. Index numbering begins with zero. */ public class GVector implements java.io.Serializable, Cloneable { private int length; double[] values; // Compatible with 1.1 static final long serialVersionUID = 1398850036893875112L; /** * Constructs a new GVector of the specified * length with all vector elements initialized to 0. * @param length the number of elements in this GVector. */ public GVector(int length) { int i; this.length = length; values = new double[length]; for(i = 0; i < length; i++) values[i] = 0.0; } /** * Constructs a new GVector from the specified array elements. * The length of this GVector is set to the length of the * specified array. The array elements are copied into this new * GVector. * @param vector the values for the new GVector. */ public GVector(double[] vector) { int i; length = vector.length; values = new double[vector.length]; for(i = 0; i < length; i++) values[i] = vector[i]; } /** * Constructs a new GVector from the specified vector. * The vector elements are copied into this new GVector. * @param vector the source GVector for this new GVector. */ public GVector(GVector vector) { int i; values = new double[vector.length]; length = vector.length; for(i = 0; i < length; i++) values[i] = vector.values[i]; } /** * Constructs a new GVector and copies the initial values * from the specified tuple. * @param tuple the source for the new GVector's initial values */ public GVector(Tuple2f tuple) { values = new double[2]; values[0] = (double)tuple.x; values[1] = (double)tuple.y; length = 2; } /** * Constructs a new GVector and copies the initial values * from the specified tuple. * @param tuple the source for the new GVector's initial values */ public GVector(Tuple3f tuple) { values = new double[3]; values[0] = (double)tuple.x; values[1] = (double)tuple.y; values[2] = (double)tuple.z; length = 3; } /** * Constructs a new GVector and copies the initial values * from the specified tuple. * @param tuple the source for the new GVector's initial values */ public GVector(Tuple3d tuple) { values = new double[3]; values[0] = tuple.x; values[1] = tuple.y; values[2] = tuple.z; length = 3; } /** * Constructs a new GVector and copies the initial values * from the specified tuple. * @param tuple the source for the new GVector's initial values */ public GVector(Tuple4f tuple) { values = new double[4]; values[0] = (double)tuple.x; values[1] = (double)tuple.y; values[2] = (double)tuple.z; values[3] = (double)tuple.w; length = 4; } /** * Constructs a new GVector and copies the initial values * from the specified tuple. * @param tuple the source for the new GVector's initial values */ public GVector(Tuple4d tuple) { values = new double[4]; values[0] = tuple.x; values[1] = tuple.y; values[2] = tuple.z; values[3] = tuple.w; length = 4; } /** * Constructs a new GVector of the specified length and * initializes it by copying the specified number of elements from * the specified array. The array must contain at least * <code>length</code> elements (i.e., <code>vector.length</code> >= * <code>length</code>. The length of this new GVector is set to * the specified length. * @param vector The array from which the values will be copied. * @param length The number of values copied from the array. */ public GVector(double vector[], int length) { int i; this.length = length; values = new double [length]; for(i=0;i<length;i++) { values[i] = vector[i]; } } /** * Returns the square root of the sum of the squares of this * vector (its length in n-dimensional space). * @return length of this vector */ public final double norm() { double sq = 0.0; int i; for(i=0;i<length;i++) { sq += values[i]*values[i]; } return(Math.sqrt(sq)); } /** * Returns the sum of the squares of this * vector (its length squared in n-dimensional space). * @return length squared of this vector */ public final double normSquared() { double sq = 0.0; int i; for(i=0;i<length;i++) { sq += values[i]*values[i]; } return(sq); } /** * Sets the value of this vector to the normalization of vector v1. * @param v1 the un-normalized vector */ public final void normalize(GVector v1) { double sq = 0.0; int i; if( length != v1.length) throw new MismatchedSizeException(VecMathI18N.getString("GVector0")); for(i=0;i<length;i++) { sq += v1.values[i]*v1.values[i]; } double invMag; invMag = 1.0/Math.sqrt(sq); for(i=0;i<length;i++) { values[i] = v1.values[i]*invMag; } } /** * Normalizes this vector in place. */ public final void normalize() { double sq = 0.0; int i; for(i=0;i<length;i++) { sq += values[i]*values[i]; } double invMag; invMag = 1.0/Math.sqrt(sq); for(i=0;i<length;i++) { values[i] = values[i]*invMag; } } /** * Sets the value of this vector to the scalar multiplication * of the scale factor with the vector v1. * @param s the scalar value * @param v1 the source vector */ public final void scale(double s, GVector v1) { int i; if( length != v1.length) throw new MismatchedSizeException(VecMathI18N.getString("GVector1")); for(i=0;i<length;i++) { values[i] = v1.values[i]*s; } } /** * Scales this vector by the scale factor s. * @param s the scalar value */ public final void scale(double s) { int i; for(i=0;i<length;i++) { values[i] = values[i]*s; } } /** * Sets the value of this vector to the scalar multiplication by s * of vector v1 plus vector v2 (this = s*v1 + v2). * @param s the scalar value * @param v1 the vector to be multiplied * @param v2 the vector to be added */ public final void scaleAdd(double s, GVector v1, GVector v2) { int i; if( v2.length != v1.length ) throw new MismatchedSizeException(VecMathI18N.getString("GVector2")); if( length != v1.length ) throw new MismatchedSizeException(VecMathI18N.getString("GVector3")); for(i=0;i<length;i++) { values[i] = v1.values[i]*s + v2.values[i]; } } /** * Sets the value of this vector to sum of itself and the specified * vector * @param vector the second vector */ public final void add(GVector vector) { int i; if( length != vector.length ) throw new MismatchedSizeException(VecMathI18N.getString("GVector4")); for(i = 0; i < length; i++) { this.values[i] += vector.values[i]; } } /** * Sets the value of this vector to the vector sum of vectors vector1 * and vector2. * @param vector1 the first vector * @param vector2 the second vector */ public final void add(GVector vector1, GVector vector2) { int i; if( vector1.length != vector2.length ) throw new MismatchedSizeException(VecMathI18N.getString("GVector5")); if( length != vector1.length ) throw new MismatchedSizeException(VecMathI18N.getString("GVector6")); for(i = 0; i < length; i++) this.values[i] = vector1.values[i] + vector2.values[i]; } /** * Sets the value of this vector to the vector difference of itself * and vector (this = this - vector). * @param vector the other vector */ public final void sub(GVector vector) { int i; if( length != vector.length ) throw new MismatchedSizeException(VecMathI18N.getString("GVector7")); for(i = 0; i < length; i++) { this.values[i] -= vector.values[i]; } } /** * Sets the value of this vector to the vector difference * of vectors vector1 and vector2 (this = vector1 - vector2). * @param vector1 the first vector * @param vector2 the second vector */ public final void sub(GVector vector1, GVector vector2) { int i,l; if( vector1.length != vector2.length ) throw new MismatchedSizeException(VecMathI18N.getString("GVector8")); if( length != vector1.length ) throw new MismatchedSizeException(VecMathI18N.getString("GVector9")); for(i = 0; i < length; i++) this.values[i] = vector1.values[i] - vector2.values[i]; } /** * Multiplies matrix m1 times Vector v1 and places the result * into this vector (this = m1*v1). * @param m1 The matrix in the multiplication * @param v1 The vector that is multiplied */ public final void mul(GMatrix m1, GVector v1) { if (m1.getNumCol() != v1.length) throw new MismatchedSizeException(VecMathI18N.getString("GVector10")); if (length != m1.getNumRow()) throw new MismatchedSizeException(VecMathI18N.getString("GVector11")); double v[]; if (v1 != this) { v = v1.values; } else { v = (double []) values.clone(); } for(int j=length-1; j>=0; j--){ values[j] = 0.0; for(int i=v1.length-1;i>=0; i--){ values[j] += m1.values[j][i] * v[i]; } } } /** * Multiplies the transpose of vector v1 (ie, v1 becomes a row * vector with respect to the multiplication) times matrix m1 * and places the result into this vector * (this = transpose(v1)*m1). The result is technically a * row vector, but the GVector class only knows about column * vectors, and so the result is stored as a column vector. * @param m1 The matrix in the multiplication * @param v1 The vector that is temporarily transposed */ public final void mul(GVector v1, GMatrix m1) { if (m1.getNumRow() != v1.length) throw new MismatchedSizeException(VecMathI18N.getString("GVector12")); if (length != m1.getNumCol()) throw new MismatchedSizeException(VecMathI18N.getString("GVector13")); double v[]; if (v1 != this) { v = v1.values; } else { v = (double []) values.clone(); } for (int j=length-1; j>=0; j--){ values[j] = 0.0; for(int i=v1.length-1; i>=0; i--){ values[j] += m1.values[i][j] * v[i]; } } } /** * Negates the value of this vector: this = -this. */ public final void negate() { for(int i=length-1; i>=0; i--) { this.values[i] *= -1.0; } } /** * Sets all the values in this vector to zero. */ public final void zero() { for (int i=0; i < this.length; i++) { this.values[i] = 0.0; } } /** * Changes the size of this vector dynamically. If the size is increased * no data values will be lost. If the size is decreased, only those data * values whose vector positions were eliminated will be lost. * @param length number of desired elements in this vector */ public final void setSize(int length) { double[] tmp = new double[length]; int i,max; if( this.length < length) max = this.length; else max = length; for(i=0;i<max;i++) { tmp[i] = values[i]; } this.length = length; values = tmp; } /** * Sets the value of this vector to the values found in the array * parameter. The array should be at least equal in length to * the number of elements in the vector. * @param vector the source array */ public final void set(double[] vector) { for(int i = length-1; i >=0; i--) values[i] = vector[i]; } /** * Sets the value of this vector to the values found in vector vector. * @param vector the source vector */ public final void set(GVector vector) { int i; if (length < vector.length) { length = vector.length; values = new double[length]; for(i = 0; i < length; i++) values[i] = vector.values[i]; }else { for(i = 0; i < vector.length; i++) values[i] = vector.values[i]; for(i = vector.length; i < length; i++) values[i] = 0.0; } } /** * Sets the value of this vector to the values in tuple * @param tuple the source for the new GVector's new values */ public final void set(Tuple2f tuple) { if (length < 2) { length = 2; values = new double[2]; } values[0] = (double)tuple.x; values[1] = (double)tuple.y; for(int i = 2; i < length; i++) values[i] = 0.0; } /** * Sets the value of this vector to the values in tuple * @param tuple the source for the new GVector's new values */ public final void set(Tuple3f tuple) { if (length < 3) { length = 3; values = new double[3]; } values[0] = (double)tuple.x; values[1] = (double)tuple.y; values[2] = (double)tuple.z; for(int i = 3; i < length; i++) values[i] = 0.0; } /** * Sets the value of this vector to the values in tuple * @param tuple the source for the new GVector's new values */ public final void set(Tuple3d tuple) { if (length < 3) { length = 3; values = new double[3]; } values[0] = tuple.x; values[1] = tuple.y; values[2] = tuple.z; for(int i = 3; i < length; i++) values[i] = 0.0; } /** * Sets the value of this vector to the values in tuple * @param tuple the source for the new GVector's new values */ public final void set(Tuple4f tuple) { if (length < 4) { length = 4; values = new double[4]; } values[0] = (double)tuple.x; values[1] = (double)tuple.y; values[2] = (double)tuple.z; values[3] = (double)tuple.w; for(int i = 4; i < length; i++) values[i] = 0.0; } /** * Sets the value of this vector to the values in tuple * @param tuple the source for the new GVector's new values */ public final void set(Tuple4d tuple) { if (length < 4) { length = 4; values = new double[4]; } values[0] = tuple.x; values[1] = tuple.y; values[2] = tuple.z; values[3] = tuple.w; for(int i = 4; i < length; i++) values[i] = 0.0; } /** * Returns the number of elements in this vector. * @return number of elements in this vector */ public final int getSize() { return values.length; } /** * Retrieves the value at the specified index value of this vector. * @param index the index of the element to retrieve (zero indexed) * @return the value at the indexed element */ public final double getElement(int index) { return values[index]; } /** * Modifies the value at the specified index of this vector. * @param index the index if the element to modify (zero indexed) * @param value the new vector element value */ public final void setElement(int index, double value) { values[index] = value; } /** * Returns a string that contains the values of this GVector. * @return the String representation */ public String toString() { StringBuffer buffer = new StringBuffer(length*8); int i; for(i=0;i<length;i++) { buffer.append(values[i]).append(" "); } return buffer.toString(); } /** * Returns a hash code value based on the data values in this * object. Two different GVector objects with identical data * values (i.e., GVector.equals returns true) will return the * same hash number. Two GVector objects with different data * members may return the same hash value, although this is not * likely. * @return the integer hash code value */ public int hashCode() { long bits = 1L; for (int i = 0; i < length; i++) { bits = 31L * bits + VecMathUtil.doubleToLongBits(values[i]); } return (int) (bits ^ (bits >> 32)); } /** * Returns true if all of the data members of GVector vector1 are * equal to the corresponding data members in this GVector. * @param vector1 The vector with which the comparison is made. * @return true or false */ public boolean equals(GVector vector1) { try { if( length != vector1.length) return false; for(int i = 0;i<length;i++) { if( values[i] != vector1.values[i]) return false; } return true; } catch (NullPointerException e2) { return false; } } /** * Returns true if the Object o1 is of type GMatrix and all of the * data members of o1 are equal to the corresponding data members in * this GMatrix. * @param o1 The object with which the comparison is made. * @return true or false */ public boolean equals(Object o1) { try { GVector v2 = (GVector) o1; if( length != v2.length) return false; for(int i = 0;i<length;i++) { if( values[i] != v2.values[i]) return false; } return true; } catch (ClassCastException e1) { return false; } catch (NullPointerException e2) { return false; } } /** * Returns true if the L-infinite distance between this vector * and vector v1 is less than or equal to the epsilon parameter, * otherwise returns false. The L-infinite * distance is equal to * MAX[abs(x1-x2), abs(y1-y2), . . . ]. * @param v1 The vector to be compared to this vector * @param epsilon the threshold value */ public boolean epsilonEquals(GVector v1, double epsilon) { double diff; if( length != v1.length) return false; for(int i = 0;i<length;i++) { diff = values[i] - v1.values[i]; if( (diff<0?-diff:diff) > epsilon) return false; } return true; } /** * Returns the dot product of this vector and vector v1. * @param v1 the other vector * @return the dot product of this and v1 */ public final double dot(GVector v1) { if( length != v1.length) throw new MismatchedSizeException(VecMathI18N.getString("GVector14")); double result = 0.0; for(int i = 0;i<length;i++) { result += values[i] * v1.values[i]; } return result; } /** * Solves for x in Ax = b, where x is this vector (nx1), A is mxn, * b is mx1, and A = U*W*transpose(V); U,W,V must * be precomputed and can be found by taking the singular value * decomposition (SVD) of A using the method SVD found in the * GMatrix class. * @param U The U matrix produced by the GMatrix method SVD * @param W The W matrix produced by the GMatrix method SVD * @param V The V matrix produced by the GMatrix method SVD * @param b The b vector in the linear equation Ax = b */ public final void SVDBackSolve(GMatrix U, GMatrix W, GMatrix V, GVector b) { if( !(U.nRow == b.getSize() && U.nRow == U.nCol && U.nRow == W.nRow ) ) { throw new MismatchedSizeException(VecMathI18N.getString("GVector15")); } if( !(W.nCol == values.length && W.nCol == V.nCol && W.nCol == V.nRow ) ) { throw new MismatchedSizeException(VecMathI18N.getString("GVector23")); } GMatrix tmp = new GMatrix( U.nRow, W.nCol); tmp.mul( U, V); tmp.mulTransposeRight( U, W); tmp.invert(); mul(tmp, b); } /** * LU Decomposition Back Solve; this method takes the LU matrix * and the permutation vector produced by the GMatrix method LUD * and solves the equation (LU)*x = b by placing the solution vector * x into this vector. This vector should be the same length or * longer than b. * @param LU The matrix into which the lower and upper decompostions * have been placed * @param b The b vector in the equation (LU)*x = b * @param permutation The row permuations that were necessary to * produce the LU matrix parameter */ public final void LUDBackSolve(GMatrix LU, GVector b, GVector permutation) { int size = LU.nRow*LU.nCol; double[] temp = new double[size]; double[] result = new double[size]; int[] row_perm = new int[b.getSize()]; int i,j; if( LU.nRow != b.getSize() ) { throw new MismatchedSizeException(VecMathI18N.getString("GVector16")); } if( LU.nRow != permutation.getSize() ) { throw new MismatchedSizeException(VecMathI18N.getString("GVector24")); } if (LU.nRow != LU.nCol) { throw new MismatchedSizeException(VecMathI18N.getString("GVector25")); } for(i=0;i<LU.nRow;i++) { for(j=0;j<LU.nCol;j++) { temp[i*LU.nCol+j] = LU.values[i][j]; } } for(i=0;i<size;i++) result[i] = 0.0; for(i=0;i<LU.nRow;i++) result[i*LU.nCol] = b.values[i]; for(i=0;i<LU.nCol;i++) row_perm[i] = (int)permutation.values[i]; GMatrix.luBacksubstitution(LU.nRow, temp, row_perm, result); for(i=0;i<LU.nRow;i++) this.values[i] = result[i*LU.nCol]; } /** * Returns the (n-space) angle in radians between this vector and * the vector parameter; the return value is constrained to the * range [0,PI]. * @param v1 The other vector * @return The angle in radians in the range [0,PI] */ public final double angle(GVector v1) { return( Math.acos( this.dot(v1) / ( this.norm()*v1.norm() ) ) ); } /** * @deprecated Use interpolate(GVector, GVector, double) instead */ public final void interpolate(GVector v1, GVector v2, float alpha) { interpolate(v1, v2, (double)alpha); } /** * @deprecated Use interpolate(GVector, double) instead */ public final void interpolate(GVector v1, float alpha) { interpolate(v1, (double)alpha); } /** * Linearly interpolates between vectors v1 and v2 and places the * result into this tuple: this = (1-alpha)*v1 + alpha*v2. * @param v1 the first vector * @param v2 the second vector * @param alpha the alpha interpolation parameter */ public final void interpolate(GVector v1, GVector v2, double alpha) { if( v2.length != v1.length ) throw new MismatchedSizeException(VecMathI18N.getString("GVector20")); if( length != v1.length ) throw new MismatchedSizeException(VecMathI18N.getString("GVector21")); for(int i=0;i<length;i++) { values[i] = (1-alpha)*v1.values[i] + alpha*v2.values[i]; } } /** * Linearly interpolates between this vector and vector v1 and * places the result into this tuple: this = (1-alpha)*this + alpha*v1. * @param v1 the first vector * @param alpha the alpha interpolation parameter */ public final void interpolate(GVector v1, double alpha) { if( v1.length != length ) throw new MismatchedSizeException(VecMathI18N.getString("GVector22")); for(int i=0;i<length;i++) { values[i] = (1-alpha)*values[i] + alpha*v1.values[i]; } } /** * Creates a new object of the same class as this object. * * @return a clone of this instance. * @exception OutOfMemoryError if there is not enough memory. * @see java.lang.Cloneable * @since vecmath 1.3 */ public Object clone() { GVector v1 = null; try { v1 = (GVector)super.clone(); } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(); } // Also need to clone array of values v1.values = new double[length]; for (int i = 0; i < length; i++) { v1.values[i] = values[i]; } return v1; } }