package org.teiid.query.xquery.saxon; import net.sf.saxon.Configuration; import net.sf.saxon.event.Receiver; import net.sf.saxon.om.AtomicSequence; import net.sf.saxon.om.AxisInfo; import net.sf.saxon.om.DocumentInfo; import net.sf.saxon.om.Item; import net.sf.saxon.om.NamePool; import net.sf.saxon.om.NamespaceBinding; import net.sf.saxon.om.NodeInfo; import net.sf.saxon.om.SequenceIterator; import net.sf.saxon.om.StandardNames; import net.sf.saxon.pattern.AnyNodeTest; import net.sf.saxon.pattern.NameTest; import net.sf.saxon.pattern.NodeKindTest; import net.sf.saxon.pattern.NodeTest; import net.sf.saxon.trans.XPathException; import net.sf.saxon.tree.NamespaceNode; import net.sf.saxon.tree.iter.AxisIterator; import net.sf.saxon.tree.iter.AxisIteratorImpl; import net.sf.saxon.tree.iter.EmptyAxisIterator; import net.sf.saxon.tree.iter.SingleNodeIterator; import net.sf.saxon.tree.iter.SingletonIterator; import net.sf.saxon.tree.util.FastStringBuffer; import net.sf.saxon.tree.util.Navigator; import net.sf.saxon.tree.wrapper.SiblingCountingNode; import net.sf.saxon.tree.wrapper.VirtualNode; import net.sf.saxon.type.AnySimpleType; import net.sf.saxon.type.SchemaType; import net.sf.saxon.type.Type; import net.sf.saxon.type.Untyped; import net.sf.saxon.value.AtomicValue; import net.sf.saxon.value.StringValue; import net.sf.saxon.value.UntypedAtomicValue; import nu.xom.Attribute; import nu.xom.Comment; import nu.xom.DocType; import nu.xom.Document; import nu.xom.Element; import nu.xom.Node; import nu.xom.ParentNode; import nu.xom.ProcessingInstruction; import nu.xom.Text; /** * A node in the XML parse tree representing an XML element, character content, * or attribute. * <P> * This is the implementation of the NodeInfo interface used as a wrapper for * XOM nodes. * * @author Michael H. Kay * @author Wolfgang Hoschek (ported net.sf.saxon.jdom to XOM) * @author Steve Hawkins (Ported to Saxon 9.5 for Teiid and fixed a bug with the buffer usage in getDeclaredNamespaces) */ public class NodeWrapper implements NodeInfo, VirtualNode, SiblingCountingNode { private static final EmptyAxisIterator<NodeInfo> EMPTY_AXIS_ITERATOR = EmptyAxisIterator.emptyAxisIterator(); protected Node node; protected short nodeKind; private NodeWrapper parent; // null means unknown protected DocumentWrapper docWrapper; protected int index; // -1 means unknown /** * This constructor is protected: nodes should be created using the wrap * factory method on the DocumentWrapper class * * @param node * The XOM node to be wrapped * @param parent * The NodeWrapper that wraps the parent of this node * @param index * Position of this node among its siblings */ protected NodeWrapper(Node node, NodeWrapper parent, int index) { short kind; if (node instanceof Element) { kind = Type.ELEMENT; } else if (node instanceof Text) { kind = Type.TEXT; } else if (node instanceof Attribute) { kind = Type.ATTRIBUTE; } else if (node instanceof Comment) { kind = Type.COMMENT; } else if (node instanceof ProcessingInstruction) { kind = Type.PROCESSING_INSTRUCTION; } else if (node instanceof Document) { kind = Type.DOCUMENT; } else { throwIllegalNode(node); // moved out of fast path to enable better inlining return; // keep compiler happy } this.nodeKind = kind; this.node = node; this.parent = parent; this.index = index; } /** * Factory method to wrap a XOM node with a wrapper that implements the * Saxon NodeInfo interface. * * @param node * The XOM node * @param docWrapper * The wrapper for the Document containing this node * @return The new wrapper for the supplied node */ protected final NodeWrapper makeWrapper(Node node, DocumentWrapper docWrapper) { return makeWrapper(node, docWrapper, null, -1); } /** * Factory method to wrap a XOM node with a wrapper that implements the * Saxon NodeInfo interface. * * @param node * The XOM node * @param docWrapper * The wrapper for the Document containing this node * @param parent * The wrapper for the parent of the XOM node * @param index * The position of this node relative to its siblings * @return The new wrapper for the supplied node */ protected final NodeWrapper makeWrapper(Node node, DocumentWrapper docWrapper, NodeWrapper parent, int index) { if (node == docWrapper.node) return docWrapper; NodeWrapper wrapper = new NodeWrapper(node, parent, index); wrapper.docWrapper = docWrapper; return wrapper; } private static void throwIllegalNode(Node node) { String str = node == null ? "NULL" : node.getClass() + " instance " + node.toString(); throw new IllegalArgumentException("Bad node type in XOM! " + str); } /** * Get the configuration */ public Configuration getConfiguration() { return docWrapper.getConfiguration(); } /** * Get the underlying XOM node, to implement the VirtualNode interface */ public Object getUnderlyingNode() { return node; } /** * Get the real XOM node, to implement the VirtualNode interface */ public Object getRealNode() { return node; } /** * Get the name pool for this node * * @return the NamePool */ public NamePool getNamePool() { return docWrapper.getNamePool(); } /** * Return the type of node. * * @return one of the values Node.ELEMENT, Node.TEXT, Node.ATTRIBUTE, etc. */ public int getNodeKind() { return nodeKind; } /** * Get the typed value of the item */ public SequenceIterator getTypedValue() { return SingletonIterator.makeIterator((AtomicValue)atomize()); } /** * Get the typed value. The result of this method will always be consistent * with the method {@link net.sf.saxon.om.Item#getTypedValue()}. However, * this method is often more convenient and may be more efficient, * especially in the common case where the value is expected to be a * singleton. * * @return the typed value. If requireSingleton is set to true, the result * will always be an AtomicValue. In other cases it may be a Value * representing a sequence whose items are atomic values. * @since 8.5 */ public AtomicSequence atomize() { switch (getNodeKind()) { case Type.COMMENT: case Type.PROCESSING_INSTRUCTION: return new StringValue(getStringValueCS()); default: return new UntypedAtomicValue(getStringValueCS()); } } /** * Get the type annotation of this node, if any. Returns -1 for kinds of * nodes that have no annotation, and for elements annotated as untyped, and * attributes annotated as untypedAtomic. * * @return the type annotation of the node. * @see net.sf.saxon.type.Type */ public int getTypeAnnotation() { if (getNodeKind() == Type.ATTRIBUTE) { return StandardNames.XS_UNTYPED_ATOMIC; } return StandardNames.XS_UNTYPED; } /** * Determine whether this is the same node as another node. <br /> * Note: a.isSameNode(b) if and only if generateId(a)==generateId(b) * * @return true if this Node object and the supplied Node object represent * the same node in the tree. */ public boolean isSameNodeInfo(NodeInfo other) { if (other instanceof NodeWrapper) { return node == ((NodeWrapper) other).node; // In XOM equality means identity } return false; } /** * The equals() method compares nodes for identity. It is defined to give the same result * as isSameNodeInfo(). * * @param other the node to be compared with this node * @return true if this NodeInfo object and the supplied NodeInfo object represent * the same node in the tree. * @since 8.7 Previously, the effect of the equals() method was not defined. Callers * should therefore be aware that third party implementations of the NodeInfo interface may * not implement the correct semantics. It is safer to use isSameNodeInfo() for this reason. * The equals() method has been defined because it is useful in contexts such as a Java Set or HashMap. */ public boolean equals(Object other) { if (other instanceof NodeInfo) { return isSameNodeInfo((NodeInfo)other); } else { return false; } } /** * The hashCode() method obeys the contract for hashCode(): that is, if two objects are equal * (represent the same node) then they must have the same hashCode() * @since 8.7 Previously, the effect of the equals() and hashCode() methods was not defined. Callers * should therefore be aware that third party implementations of the NodeInfo interface may * not implement the correct semantics. */ public int hashCode() { return node.hashCode(); } /** * Get the System ID for the node. * * @return the System Identifier of the entity in the source document * containing the node, or null if not known. Note this is not the * same as the base URI: the base URI can be modified by xml:base, * but the system ID cannot. */ public String getSystemId() { return docWrapper.baseURI; } public void setSystemId(String uri) { docWrapper.baseURI = uri; } /** * Get the Base URI for the node, that is, the URI used for resolving a * relative URI contained in the node. */ public String getBaseURI() { return node.getBaseURI(); } /** * Get line number * * @return the line number of the node in its original source document; or * -1 if not available */ public int getLineNumber() { return -1; } /** * Determine the relative position of this node and another node, in * document order. The other node will always be in the same document. * * @param other * The other node, whose position is to be compared with this * node * @return -1 if this node precedes the other node, +1 if it follows the * other node, or 0 if they are the same node. (In this case, * isSameNode() will always return true, and the two nodes will * produce the same result for generateId()) */ public int compareOrder(NodeInfo other) { if (other instanceof NodeWrapper) { return compareOrderFast(node,((NodeWrapper) other).node); // } // if (other instanceof SiblingCountingNode) { // return Navigator.compareOrder(this, (SiblingCountingNode) other); } else { // it must be a namespace node return -other.compareOrder(this); } } private static int compareOrderFast(Node first, Node second) { /* * Unfortunately we do not have a sequence number for each node at hand; * this would allow to turn the comparison into a simple sequence number * subtraction. Walking the entire tree and batch-generating sequence * numbers on the fly is no good option either. However, this rewritten * implementation turns out to be more than fast enough. */ // assert first != null && second != null // assert first and second MUST NOT be namespace nodes if (first == second) return 0; ParentNode firstParent = first.getParent(); ParentNode secondParent = second.getParent(); if (firstParent == null) { if (secondParent != null) return -1; // first node is the root // both nodes are parentless, use arbitrary but fixed order: return first.hashCode() - second.hashCode(); } if (secondParent == null) return +1; // second node is the root // do they have the same parent (common case)? if (firstParent == secondParent) { int i1 = firstParent.indexOf(first); int i2 = firstParent.indexOf(second); // note that attributes and namespaces are not children // of their own parent (i = -1). // attribute (if any) comes before child if (i1 != -1) return (i2 != -1) ? i1 - i2 : +1; if (i2 != -1) return -1; // assert: i1 == -1 && i2 == -1 // i.e. both nodes are attributes Element elem = (Element) firstParent; for (int i = elem.getAttributeCount(); --i >= 0;) { Attribute attr = elem.getAttribute(i); if (attr == second) return -1; if (attr == first) return +1; } throw new IllegalStateException("should be unreachable"); } // find the depths of both nodes in the tree int depth1 = 0; int depth2 = 0; Node p1 = first; Node p2 = second; while (p1 != null) { depth1++; p1 = p1.getParent(); if (p1 == second) return +1; } while (p2 != null) { depth2++; p2 = p2.getParent(); if (p2 == first) return -1; } // move up one branch of the tree so we have two nodes on the same level p1 = first; while (depth1 > depth2) { p1 = p1.getParent(); depth1--; } p2 = second; while (depth2 > depth1) { p2 = p2.getParent(); depth2--; } // now move up both branches in sync until we find a common parent while (true) { firstParent = p1.getParent(); secondParent = p2.getParent(); if (firstParent == null || secondParent == null) { // both nodes are documentless, use arbitrary but fixed order // based on their root elements return p1.hashCode() - p2.hashCode(); // throw new NullPointerException("XOM tree compare - internal error"); } if (firstParent == secondParent) { return firstParent.indexOf(p1) - firstParent.indexOf(p2); } p1 = firstParent; p2 = secondParent; } } /** * Return the string value of the node. The interpretation of this depends * on the type of node. For an element it is the accumulated character * content of the element, including descendant elements. * * @return the string value of the node */ public String getStringValue() { return node.getValue(); } /** * Get the value of the item as a CharSequence. This is in some cases more efficient than * the version of the method that returns a String. */ public CharSequence getStringValueCS() { return node.getValue(); } /** * Get name code. The name code is a coded form of the node name: two nodes * with the same name code have the same namespace URI, the same local name, * and the same prefix. By masking the name code with &0xfffff, you get a * fingerprint: two nodes with the same fingerprint have the same local name * and namespace URI. * * @see net.sf.saxon.om.NamePool#allocate allocate */ public int getNameCode() { switch (nodeKind) { case Type.ELEMENT: case Type.ATTRIBUTE: case Type.PROCESSING_INSTRUCTION: return docWrapper.getNamePool().allocate(getPrefix(), getURI(), getLocalPart()); default: return -1; } } /** * Get fingerprint. The fingerprint is a coded form of the expanded name of * the node: two nodes with the same name code have the same namespace URI * and the same local name. A fingerprint of -1 should be returned for a * node with no name. */ public int getFingerprint() { int nc = getNameCode(); if (nc == -1) return -1; return nc & NamePool.FP_MASK; } /** * Get the local part of the name of this node. This is the name after the * ":" if any. * * @return the local part of the name. For an unnamed node, returns "". */ public String getLocalPart() { switch (nodeKind) { case Type.ELEMENT: return ((Element) node).getLocalName(); case Type.ATTRIBUTE: return ((Attribute) node).getLocalName(); case Type.PROCESSING_INSTRUCTION: return ((ProcessingInstruction) node).getTarget(); default: return ""; } } /** * Get the prefix of the name of the node. This is defined only for elements and attributes. * If the node has no prefix, or for other kinds of node, return a zero-length string. * @return The prefix of the name of the node. */ public String getPrefix() { switch (nodeKind) { case Type.ELEMENT: return ((Element) node).getNamespacePrefix(); case Type.ATTRIBUTE: return ((Attribute) node).getNamespacePrefix(); default: return ""; } } /** * Get the URI part of the name of this node. This is the URI corresponding * to the prefix, or the URI of the default namespace if appropriate. * * @return The URI of the namespace of this node. For an unnamed node, or * for a node with an empty prefix, return an empty string. */ public String getURI() { switch (nodeKind) { case Type.ELEMENT: return ((Element) node).getNamespaceURI(); case Type.ATTRIBUTE: return ((Attribute) node).getNamespaceURI(); default: return ""; } } /** * Get the display name of this node. For elements and attributes this is * [prefix:]localname. For unnamed nodes, it is an empty string. * * @return The display name of this node. For a node with no name, return an * empty string. */ public String getDisplayName() { switch (nodeKind) { case Type.ELEMENT: return ((Element) node).getQualifiedName(); case Type.ATTRIBUTE: return ((Attribute) node).getQualifiedName(); case Type.PROCESSING_INSTRUCTION: return ((ProcessingInstruction) node).getTarget(); default: return ""; } } /** * Get the NodeInfo object representing the parent of this node */ public NodeInfo getParent() { if (parent == null) { ParentNode p = node.getParent(); if (p != null) parent = makeWrapper(p, docWrapper); } return parent; } /** * Get the index position of this node among its siblings (starting from 0) */ public int getSiblingPosition() { if (index != -1) return index; switch (nodeKind) { case Type.ATTRIBUTE: { Attribute att = (Attribute) node; Element p = (Element) att.getParent(); if (p == null) return 0; for (int i=p.getAttributeCount(); --i >= 0;) { if (p.getAttribute(i) == att) { index = i; return i; } } throw new IllegalStateException("XOM node not linked to parent node"); } default: { ParentNode p = node.getParent(); int i = (p == null ? 0 : p.indexOf(node)); if (i == -1) throw new IllegalStateException("XOM node not linked to parent node"); index = i; return index; } } } /** * Return an iteration over the nodes reached by the given axis from this * node * * @param axisNumber * the axis to be used * @return a SequenceIterator that scans the nodes reached by the axis in * turn. */ public AxisIterator iterateAxis(byte axisNumber) { return iterateAxis(axisNumber, AnyNodeTest.getInstance()); } /** * Return an iteration over the nodes reached by the given axis from this * node * * @param axisNumber * the axis to be used * @param nodeTest * A pattern to be matched by the returned nodes * @return a SequenceIterator that scans the nodes reached by the axis in * turn. */ public AxisIterator iterateAxis(byte axisNumber, NodeTest nodeTest) { // for clarifications, see the W3C specs or: // http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/xmrefaxes.asp switch (axisNumber) { case AxisInfo.ANCESTOR: return new AncestorAxisIterator(this, false, nodeTest); case AxisInfo.ANCESTOR_OR_SELF: return new AncestorAxisIterator(this, true, nodeTest); case AxisInfo.ATTRIBUTE: if (nodeKind != Type.ELEMENT || ((Element) node).getAttributeCount() == 0) { return EMPTY_AXIS_ITERATOR; } else { return new AttributeAxisIterator(this, nodeTest); } case AxisInfo.CHILD: if (hasChildNodes()) { return new ChildAxisIterator(this, true, true, nodeTest); } else { return EMPTY_AXIS_ITERATOR; } case AxisInfo.DESCENDANT: if (hasChildNodes()) { return new DescendantAxisIterator(this, false, false, nodeTest); } else { return EMPTY_AXIS_ITERATOR; } case AxisInfo.DESCENDANT_OR_SELF: if (hasChildNodes()) { return new DescendantAxisIterator(this, true, false, nodeTest); } else { return filteredSingleton(this, nodeTest); } case AxisInfo.FOLLOWING: if (getParent() == null) { return EMPTY_AXIS_ITERATOR; } else { return new DescendantAxisIterator(this, false, true, nodeTest); } case AxisInfo.FOLLOWING_SIBLING: if (nodeKind == Type.ATTRIBUTE || getParent() == null) { return EMPTY_AXIS_ITERATOR; } else { return new ChildAxisIterator(this, false, true, nodeTest); } case AxisInfo.NAMESPACE: if (nodeKind == Type.ELEMENT) { return NamespaceNode.makeIterator(this, nodeTest); } else { return EMPTY_AXIS_ITERATOR; } case AxisInfo.PARENT: if (getParent() == null) { return EMPTY_AXIS_ITERATOR; } else { return filteredSingleton(getParent(), nodeTest); } case AxisInfo.PRECEDING: return new PrecedingAxisIterator(this, false, nodeTest); // return new Navigator.AxisFilter( // new Navigator.PrecedingEnumeration(this, false), nodeTest); case AxisInfo.PRECEDING_SIBLING: if (nodeKind == Type.ATTRIBUTE || getParent() == null) { return EMPTY_AXIS_ITERATOR; } else { return new ChildAxisIterator(this, false, false, nodeTest); } case AxisInfo.SELF: return filteredSingleton(this, nodeTest); case AxisInfo.PRECEDING_OR_ANCESTOR: // This axis is used internally by saxon for the xsl:number implementation, // it returns the union of the preceding axis and the ancestor axis. return new PrecedingAxisIterator(this, true, nodeTest); // return new Navigator.AxisFilter(new Navigator.PrecedingEnumeration( // this, true), nodeTest); default: throw new IllegalArgumentException("Unknown axis number " + axisNumber); } } // private static AxisIterator makeSingleIterator(NodeWrapper wrapper, NodeTest nodeTest) { // if (nodeTest == AnyNodeTest.getInstance() || nodeTest.matches(wrapper)) // return SingletonIterator.makeIterator(wrapper); // else // return EmptyIterator.getInstance(); // } /** * Get the value of a given attribute of this node * * @param fingerprint * The fingerprint of the attribute name * @return the attribute value if it exists or null if not */ public String getAttributeValue(int fingerprint) { if (nodeKind == Type.ELEMENT) { NamePool pool = docWrapper.getNamePool(); String localName = pool.getLocalName(fingerprint); String uri = pool.getURI(fingerprint); Attribute att = ((Element) node).getAttribute(localName, uri); if (att != null) return att.getValue(); } return null; } /** * Get the root node of the tree containing this node * * @return the NodeInfo representing the top-level ancestor of this node. * This will not necessarily be a document node */ public NodeInfo getRoot() { return docWrapper; } /** * Get the root node, if it is a document node. * * @return the DocumentInfo representing the containing document. */ public DocumentInfo getDocumentRoot() { if (docWrapper.node instanceof Document) { return docWrapper; } else { return null; } } /** * Determine whether the node has any children. <br /> * Note: the result is equivalent to <br /> * getEnumeration(Axis.CHILD, AnyNodeTest.getInstance()).hasNext() */ public boolean hasChildNodes() { return node.getChildCount() > 0; } /** * Get a character string that uniquely identifies this node. Note: * a.isSameNode(b) if and only if generateId(a)==generateId(b) * * @param buffer a buffer to contain a string that uniquely identifies this node, across all documents */ public void generateId(FastStringBuffer buffer) { Navigator.appendSequentialKey(this, buffer, true); //buffer.append(Navigator.getSequentialKey(this)); } /** * Get the document number of the document containing this node. For a * free-standing orphan node, just return the hashcode. */ public long getDocumentNumber() { return docWrapper.getDocumentNumber(); } /** * Copy this node to a given outputter (deep copy) */ @Override public void copy(Receiver out, int copyOptions, int locationId) throws XPathException { Navigator.copy(this, out, copyOptions, locationId); } /////////////////////////////////////////////////////////////////////////////// // Axis enumeration classes /////////////////////////////////////////////////////////////////////////////// /** * Handles the ancestor axis in a rather direct manner. */ private final class AncestorAxisIterator extends AxisIteratorImpl { private NodeWrapper start; private boolean includeSelf; private NodeTest nodeTest; public AncestorAxisIterator(NodeWrapper start, boolean includeSelf, NodeTest test) { // use lazy instead of eager materialization (performance) this.start = start; if (test == AnyNodeTest.getInstance()) test = null; this.nodeTest = test; if (!includeSelf) this.current = start; this.includeSelf = includeSelf; this.position = 0; } public NodeInfo next() { NodeInfo curr; do { // until we find a match curr = advance(); } while (curr != null && nodeTest != null && (! nodeTest.matches(curr))); if (curr != null) position++; current = curr; return curr; } private NodeInfo advance() { if (current == null) current = start; else current = current.getParent(); return current; } public AncestorAxisIterator getAnother() { return new AncestorAxisIterator(start, includeSelf, nodeTest); } } // end of class AncestorAxisIterator /** * Handles the attribute axis in a rather direct manner. */ private final class AttributeAxisIterator extends AxisIteratorImpl { private NodeWrapper start; private int cursor; private NodeTest nodeTest; public AttributeAxisIterator(NodeWrapper start, NodeTest test) { // use lazy instead of eager materialization (performance) this.start = start; if (test == AnyNodeTest.getInstance()) test = null; this.nodeTest = test; this.position = 0; this.cursor = 0; } public NodeInfo next() { NodeInfo curr; do { // until we find a match curr = advance(); } while (curr != null && nodeTest != null && (! nodeTest.matches(curr))); if (curr != null) position++; current = curr; return curr; } private NodeInfo advance() { Element elem = (Element) start.node; if (cursor == elem.getAttributeCount()) return null; NodeInfo curr = makeWrapper(elem.getAttribute(cursor), docWrapper, start, cursor); cursor++; return curr; } public AttributeAxisIterator getAnother() { return new AttributeAxisIterator(start, nodeTest); } } // end of class AttributeAxisIterator /** * The class ChildAxisIterator handles not only the child axis, but also the * following-sibling and preceding-sibling axes. It can also iterate the * children of the start node in reverse order, something that is needed to * support the preceding and preceding-or-ancestor axes (the latter being * used by xsl:number) */ private final class ChildAxisIterator extends AxisIteratorImpl { private NodeWrapper start; private NodeWrapper commonParent; private int ix; private boolean downwards; // iterate children of start node (not siblings) private boolean forwards; // iterate in document order (not reverse order) private ParentNode par; private int cursor; private NodeTest nodeTest; private ChildAxisIterator(NodeWrapper start, boolean downwards, boolean forwards, NodeTest test) { this.start = start; this.downwards = downwards; this.forwards = forwards; if (test == AnyNodeTest.getInstance()) test = null; this.nodeTest = test; this.position = 0; if (downwards) commonParent = start; else commonParent = (NodeWrapper) start.getParent(); par = (ParentNode) commonParent.node; if (downwards) { ix = (forwards ? 0 : par.getChildCount()); } else { // find the start node among the list of siblings // ix = start.getSiblingPosition(); ix = par.indexOf(start.node); if (forwards) ix++; } cursor = ix; if (!downwards && !forwards) ix--; } public NodeInfo next() { NodeInfo curr; do { // until we find a match curr = advance(); } while (curr != null && nodeTest != null && (! nodeTest.matches(curr))); if (curr != null) position++; current = curr; return curr; } private NodeInfo advance() { Node nextChild; do { if (forwards) { if (cursor == par.getChildCount()) return null; nextChild = par.getChild(cursor++); } else { // backwards if (cursor == 0) return null; nextChild = par.getChild(--cursor); } } while (nextChild instanceof DocType); // DocType is not an XPath node; can occur for /child::node() NodeInfo curr = makeWrapper(nextChild, docWrapper, commonParent, ix); ix += (forwards ? 1 : -1); return curr; } public ChildAxisIterator getAnother() { return new ChildAxisIterator(start, downwards, forwards, nodeTest); } } /** * A bit of a misnomer; efficiently takes care of descendants, * descentants-or-self as well as "following" axis. * "includeSelf" must be false for the following axis. * Uses simple and effective O(1) backtracking via indexOf(). */ private final class DescendantAxisIterator extends AxisIteratorImpl { private NodeWrapper start; private boolean includeSelf; private boolean following; private Node anchor; // so we know where to stop the scan private Node currNode; private boolean moveToNextSibling; private NodeTest nodeTest; private String testLocalName; private String testURI; public DescendantAxisIterator(NodeWrapper start, boolean includeSelf, boolean following, NodeTest test) { this.start = start; this.includeSelf = includeSelf; this.following = following; this.moveToNextSibling = following; if (!following) anchor = start.node; if (!includeSelf) currNode = start.node; if (test == AnyNodeTest.getInstance()) { // performance hack test = null; // mark as AnyNodeTest } else if (test instanceof NameTest) { NameTest nt = (NameTest) test; if (nt.getPrimitiveType() == Type.ELEMENT) { // performance hack // mark as element name test NamePool pool = getNamePool(); this.testLocalName = pool.getLocalName(nt.getFingerprint()); this.testURI = pool.getURI(nt.getFingerprint()); } } else if (test instanceof NodeKindTest) { if (test.getPrimitiveType() == Type.ELEMENT) { // performance hack // mark as element type test this.testLocalName = ""; this.testURI = null; } } this.nodeTest = test; this.position = 0; } public NodeInfo next() { NodeInfo curr; do { // until we find a match curr = advance(); } while (curr != null && nodeTest != null && (! nodeTest.matches(curr))); if (curr != null) position++; current = curr; return curr; } // might look expensive at first glance - but it's not private NodeInfo advance() { if (currNode == null) { // if includeSelf currNode = start.node; return start; } int i; do { i = 0; Node p = currNode; if (p.getChildCount() == 0 || moveToNextSibling) { // move to next sibling moveToNextSibling = false; // do it just once while (true) { // if we've reached the root we're done scanning p = currNode.getParent(); if (p == null) return null; // Note: correct even if currNode is an attribute. // Performance is particularly good with the O(1) patch // for XOM's ParentNode.indexOf() i = currNode.getParent().indexOf(currNode) + 1; if (i < p.getChildCount()) { break; // break out of while(true) loop; move to next sibling } else { // reached last sibling; move up currNode = p; // if we've come all the way back to the start anchor we're done if (p == anchor) return null; } } } currNode = p.getChild(i); } while (!conforms(currNode)); // note the null here: makeNodeWrapper(parent, ...) is fast, so it // doesn't really matter that we don't keep a link to it. // In fact, it makes objects more short lived, easing pressure on // the VM allocator and collector for tenured heaps. return makeWrapper(currNode, docWrapper, null, i); } // avoids NodeWrapper allocation when there's clearly a mismatch (common case) private boolean conforms(Node node) { if (this.testLocalName != null) { // element test? if (!(node instanceof Element)) return false; if (this.testURI == null) return true; // pure element type test // element name test Element elem = (Element) node; return this.testLocalName.equals(elem.getLocalName()) && this.testURI.equals(elem.getNamespaceURI()); } else { // DocType is not an XPath node; can occur for /descendants::node() return !(node instanceof DocType); } } public DescendantAxisIterator getAnother() { return new DescendantAxisIterator(start, includeSelf, following, nodeTest); } public int getProperties() { return 0; } } /** * Efficiently takes care of preceding axis and Saxon internal preceding-or-ancestor axis. * Uses simple and effective O(1) backtracking via indexOf(). * Implemented along similar lines as DescendantAxisIterator. */ private final class PrecedingAxisIterator extends AxisIteratorImpl { private NodeWrapper start; private boolean includeAncestors; private Node currNode; private ParentNode nextAncestor; // next ancestors to skip if !includeAncestors private NodeTest nodeTest; private String testLocalName; private String testURI; public PrecedingAxisIterator(NodeWrapper start, boolean includeAncestors, NodeTest test) { this.start = start; this.includeAncestors = includeAncestors; this.currNode = start.node; if (includeAncestors) nextAncestor = null; else nextAncestor = start.node.getParent(); if (test == AnyNodeTest.getInstance()) { // performance hack test = null; // mark as AnyNodeTest } else if (test instanceof NameTest) { NameTest nt = (NameTest) test; if (nt.getPrimitiveType() == Type.ELEMENT) { // performance hack // mark as element name test NamePool pool = getNamePool(); this.testLocalName = pool.getLocalName(nt.getFingerprint()); this.testURI = pool.getURI(nt.getFingerprint()); } } else if (test instanceof NodeKindTest) { if (test.getPrimitiveType() == Type.ELEMENT) { // performance hack // mark as element type test this.testLocalName = ""; this.testURI = null; } } this.nodeTest = test; this.position = 0; } public NodeInfo next() { NodeInfo curr; do { // until we find a match curr = advance(); } while (curr != null && nodeTest != null && (! nodeTest.matches(curr))); if (curr != null) position++; current = curr; return curr; } // might look expensive at first glance - but it's not private NodeInfo advance() { int i; do { Node p; while (true) { // if we've reached the root we're done scanning // System.out.println("p="+p); p = currNode.getParent(); if (p == null) return null; // Note: correct even if currNode is an attribute. // Performance is particularly good with the O(1) patch // for XOM's ParentNode.indexOf() i = currNode.getParent().indexOf(currNode) - 1; if (i >= 0) { // move to next sibling's last descendant node p = p.getChild(i); // move to next sibling int j; while ((j = p.getChildCount()-1) >= 0) { // move to last descendant node p = p.getChild(j); i = j; } break; // break out of while(true) loop } else { // there are no more siblings; move up // if !includeAncestors skip the ancestors of the start node // assert p != null if (p != nextAncestor) break; // break out of while(true) loop nextAncestor = nextAncestor.getParent(); currNode = p; } } currNode = p; } while (!conforms(currNode)); // note the null here: makeNodeWrapper(parent, ...) is fast, so it // doesn't really matter that we don't keep a link to it. // In fact, it makes objects more short lived, easing pressure on // the VM allocator and collector for tenured heaps. return makeWrapper(currNode, docWrapper, null, i); } // avoids NodeWrapper allocation when there's clearly a mismatch (common case) // same as for DescendantAxisIterator private boolean conforms(Node node) { if (this.testLocalName != null) { // element test? if (!(node instanceof Element)) return false; if (this.testURI == null) return true; // pure element type test // element name test Element elem = (Element) node; return this.testLocalName.equals(elem.getLocalName()) && this.testURI.equals(elem.getNamespaceURI()); } else { // DocType is not an XPath node return !(node instanceof DocType); } } public PrecedingAxisIterator getAnother() { return new PrecedingAxisIterator(start, includeAncestors, nodeTest); } } private static AxisIterator filteredSingleton(NodeInfo node, NodeTest nodeTest) { // return Navigator.filteredSingleton(node, nodeTest); // saxon >= 8.7 if (node != null && (nodeTest == AnyNodeTest.getInstance() || nodeTest.matches(node))) { return SingleNodeIterator.makeIterator(node); } else { return EMPTY_AXIS_ITERATOR; } } @Override public int getColumnNumber() { return -1; } @Override public boolean isId() { return false; } @Override public boolean isIdref() { return false; } @Override public boolean isNilled() { return false; } @Override public String getAttributeValue(String uri, String localName) { if (nodeKind == Type.ELEMENT) { Attribute att = ((Element) node).getAttribute(localName, uri); if (att != null) return att.getValue(); } return null; } @Override public NamespaceBinding[] getDeclaredNamespaces(NamespaceBinding[] buffer) { if (nodeKind == Type.ELEMENT) { Element elem = (Element)node; int size = elem.getNamespaceDeclarationCount(); if (size == 0) { return new NamespaceBinding[0]; } NamespaceBinding[] result = (buffer != null && size <= buffer.length ? buffer : new NamespaceBinding[size]); for (int i=0; i < size; i++) { String prefix = elem.getNamespacePrefix(i); String uri = elem.getNamespaceURI(prefix); result[i] = new NamespaceBinding(prefix, uri); } if (size < result.length) { result[size] = null; } return result; } return null; } @Override public SchemaType getSchemaType() { if (nodeKind == Type.ATTRIBUTE) { return AnySimpleType.getInstance(); } return Untyped.getInstance(); } @Override public int comparePosition(NodeInfo other) { return Navigator.comparePosition(this, other); } @Override public Item head() throws XPathException { return this; } @Override public SequenceIterator<? extends Item> iterate() throws XPathException { return SingletonIterator.makeIterator((NodeInfo)this); } } // // The contents of this file are subject to the Mozilla Public License Version // 1.0 (the "License"); // you may not use this file except in compliance with the License. You may // obtain a copy of the // License at http://www.mozilla.org/MPL/ // // Software distributed under the License is distributed on an "AS IS" basis, // WITHOUT WARRANTY OF ANY KIND, either express or implied. // See the License for the specific language governing rights and limitations // under the License. // // The Original Code is: all this file. // // The Initial Developer of the Original Code is Michael Kay, with extensive // rewriting by Wolfgang Hoschek // // Portions created by (your name) are Copyright (C) (your legal entity). All // Rights Reserved. // // Contributor(s): none. //