/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.example.android.compass; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.FloatBuffer; import javax.microedition.khronos.egl.EGL10; import javax.microedition.khronos.egl.EGLConfig; import javax.microedition.khronos.opengles.GL10; import static javax.microedition.khronos.opengles.GL10.*; import android.app.Activity; import android.content.Context; import android.hardware.Sensor; import android.hardware.SensorEvent; import android.hardware.SensorEventListener; import android.hardware.SensorManager; import android.opengl.GLSurfaceView; import android.opengl.GLSurfaceView.Renderer; import android.os.Bundle; import android.util.Log; /** * This class provides a basic demonstration of how to use the * {@link android.hardware.SensorManager SensorManager} API to draw * a 3D compass. */ public class CompassActivity extends Activity implements Renderer, SensorEventListener { private GLSurfaceView mGLSurfaceView; private SensorManager mSensorManager; private float[] mGData = new float[3]; private float[] mMData = new float[3]; private float[] mR = new float[16]; private float[] mI = new float[16]; private FloatBuffer mVertexBuffer; private FloatBuffer mColorBuffer; private ByteBuffer mIndexBuffer; private float[] mOrientation = new float[3]; private int mCount; public CompassActivity() { } /** Called with the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); mSensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE); mGLSurfaceView = new GLSurfaceView(this); mGLSurfaceView.setRenderer(this); setContentView(mGLSurfaceView); } @Override protected void onResume() { // Ideally a game should implement onResume() and onPause() // to take appropriate action when the activity looses focus super.onResume(); mGLSurfaceView.onResume(); Sensor gsensor = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER); Sensor msensor = mSensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD); mSensorManager.registerListener(this, gsensor, SensorManager.SENSOR_DELAY_GAME); mSensorManager.registerListener(this, msensor, SensorManager.SENSOR_DELAY_GAME); } @Override protected void onPause() { // Ideally a game should implement onResume() and onPause() // to take appropriate action when the activity looses focus super.onPause(); mGLSurfaceView.onPause(); mSensorManager.unregisterListener(this); } public void onDrawFrame(GL10 gl) { /* * Usually, the first thing one might want to do is to clear * the screen. The most efficient way of doing this is to use * glClear(). */ gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT); /* * Now we're ready to draw some 3D objects */ gl.glMatrixMode(GL10.GL_MODELVIEW); gl.glLoadIdentity(); gl.glTranslatef(0, 0, -2); /* * All the magic happens here. The rotation matrix mR reported by * SensorManager.getRotationMatrix() is a 4x4 row-major matrix. * We need to use its inverse for rendering. The inverse is * simply calculated by taking the matrix' transpose. However, since * glMultMatrixf() expects a column-major matrix, we can use mR * directly! */ gl.glMultMatrixf(mR, 0); // some test code which will be used/cleaned up before we ship this. //gl.glMultMatrixf(mI, 0); gl.glVertexPointer(3, GL_FLOAT, 0, mVertexBuffer); gl.glColorPointer(4, GL_FLOAT, 0, mColorBuffer); gl.glDrawElements(GL_LINES, 6, GL_UNSIGNED_BYTE, mIndexBuffer); } public void onSurfaceChanged(GL10 gl, int width, int height) { gl.glViewport(0, 0, width, height); /* * Set our projection matrix. This doesn't have to be done * each time we draw, but usually a new projection needs to * be set when the viewport is resized. */ float ratio = (float) width / height; gl.glMatrixMode(GL10.GL_PROJECTION); gl.glLoadIdentity(); gl.glFrustumf(-ratio, ratio, -1, 1, 1, 10); } public void onSurfaceCreated(GL10 gl, EGLConfig config) { /* * By default, OpenGL enables features that improve quality * but reduce performance. One might want to tweak that * especially on software renderer. */ gl.glDisable(GL10.GL_DITHER); /* * Some one-time OpenGL initialization can be made here * probably based on features of this particular context */ gl.glClearColor(1,1,1,1); gl.glEnable(GL10.GL_CULL_FACE); gl.glShadeModel(GL10.GL_SMOOTH); gl.glEnable(GL10.GL_DEPTH_TEST); /* * create / load the our 3D models here */ gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_COLOR_ARRAY); float vertices[] = { 0,0,0, 1,0,0, 0,1,0, 0,0,1 }; float colors[] = { 0,0,0,0, 1,0,0,1, 0,1,0,1, 0,0,1,1 }; byte indices[] = { 0, 1, 0, 2, 0, 3 }; // Buffers to be passed to gl*Pointer() functions // must be direct, i.e., they must be placed on the // native heap where the garbage collector cannot // move them. // // Buffers with multi-byte datatypes (e.g., short, int, float) // must have their byte order set to native order ByteBuffer vbb; vbb = ByteBuffer.allocateDirect(vertices.length*4); vbb.order(ByteOrder.nativeOrder()); mVertexBuffer = vbb.asFloatBuffer(); mVertexBuffer.put(vertices); mVertexBuffer.position(0); vbb = ByteBuffer.allocateDirect(colors.length*4); vbb.order(ByteOrder.nativeOrder()); mColorBuffer = vbb.asFloatBuffer(); mColorBuffer.put(colors); mColorBuffer.position(0); mIndexBuffer = ByteBuffer.allocateDirect(indices.length); mIndexBuffer.put(indices); mIndexBuffer.position(0); } public void onAccuracyChanged(Sensor sensor, int accuracy) { } public void onSensorChanged(SensorEvent event) { int type = event.sensor.getType(); float[] data; if (type == Sensor.TYPE_ACCELEROMETER) { data = mGData; } else if (type == Sensor.TYPE_MAGNETIC_FIELD) { data = mMData; } else { // we should not be here. return; } for (int i=0 ; i<3 ; i++) data[i] = event.values[i]; SensorManager.getRotationMatrix(mR, mI, mGData, mMData); // some test code which will be used/cleaned up before we ship this. // SensorManager.remapCoordinateSystem(mR, // SensorManager.AXIS_X, SensorManager.AXIS_Z, mR); // SensorManager.remapCoordinateSystem(mR, // SensorManager.AXIS_Y, SensorManager.AXIS_MINUS_X, mR); SensorManager.getOrientation(mR, mOrientation); float incl = SensorManager.getInclination(mI); if (mCount++ > 50) { final float rad2deg = (float)(180.0f/Math.PI); mCount = 0; Log.d("Compass", "yaw: " + (int)(mOrientation[0]*rad2deg) + " pitch: " + (int)(mOrientation[1]*rad2deg) + " roll: " + (int)(mOrientation[2]*rad2deg) + " incl: " + (int)(incl*rad2deg) ); } } }