/** * $Id: mxSpline1D.java,v 1.1 2012/11/15 13:26:39 gaudenz Exp $ * Copyright (c) 2010, David Benson */ package com.mxgraph.util; import java.util.Arrays; /** * One dimension of a spline curve */ public class mxSpline1D { protected double[] len; protected double[] pos1D; protected double[] a; protected double[] b; protected double[] c; protected double[] d; /** tracks the last index found since that is mostly commonly the next one used */ private int storageIndex = 0; /** * Creates a new Spline. * @param controlPointProportions the proportion along the curve, from 0->1 * that each control point lies on * @param positions1D the co-ordinate position in the current dimension that * each control point lies on */ public mxSpline1D(double[] controlPointProportions, double[] positions1D) { setValues(controlPointProportions, positions1D); } /** * Set values for this Spline. * @param controlPointProportions the proportion along the curve, from 0->1 * that each control point lies on * @param positions1D the co-ordinate position in the current dimension that * each control point lies on */ public void setValues(double[] controlPointProportions, double[] positions1D) { this.len = controlPointProportions; this.pos1D = positions1D; if (len.length > 1) { calculateCoefficients(); } } /** * Returns an interpolated value. * @param x * @return the interpolated value */ public double getValue(double x) { if (len.length == 0) { return Double.NaN; } if (len.length == 1) { if (len[0] == x) { return pos1D[0]; } else { return Double.NaN; } } int index = Arrays.binarySearch(len, x); if (index > 0) { return pos1D[index]; } index = - (index + 1) - 1; //TODO linear interpolation or extrapolation if (index < 0) { return pos1D[0]; } return a[index] + b[index] * (x - len[index]) + c[index] * Math.pow(x - len[index], 2) + d[index] * Math.pow(x - len[index], 3); } /** * Returns an interpolated value. To be used when a long sequence of values * are required in order, but ensure checkValues() is called beforehand to * ensure the boundary checks from getValue() are made * @param x * @return the interpolated value */ public double getFastValue(double x) { // Fast check to see if previous index is still valid if (storageIndex > -1 && storageIndex < len.length-1 && x > len[storageIndex] && x < len[storageIndex + 1]) { } else { int index = Arrays.binarySearch(len, x); if (index > 0) { return pos1D[index]; } index = - (index + 1) - 1; storageIndex = index; } //TODO linear interpolation or extrapolation if (storageIndex < 0) { return pos1D[0]; } double value = x - len[storageIndex]; return a[storageIndex] + b[storageIndex] * value + c[storageIndex] * (value * value) + d[storageIndex] * (value * value * value); } /** * Returns the first derivation at x. * @param x * @return the first derivation at x */ public double getDx(double x) { if (len.length == 0 || len.length == 1) { return 0; } int index = Arrays.binarySearch(len, x); if (index < 0) { index = - (index + 1) - 1; } return b[index] + 2 * c[index] * (x - len[index]) + 3 * d[index] * Math.pow(x - len[index], 2); } /** * Calculates the Spline coefficients. */ private void calculateCoefficients() { int N = pos1D.length; a = new double[N]; b = new double[N]; c = new double[N]; d = new double[N]; if (N == 2) { a[0] = pos1D[0]; b[0] = pos1D[1] - pos1D[0]; return; } double[] h = new double[N - 1]; for (int i = 0; i < N - 1; i++) { a[i] = pos1D[i]; h[i] = len[i + 1] - len[i]; // h[i] is used for division later, avoid a NaN if (h[i] == 0.0) { h[i] = 0.01; } } a[N - 1] = pos1D[N - 1]; double[][] A = new double[N - 2][N - 2]; double[] y = new double[N - 2]; for (int i = 0; i < N - 2; i++) { y[i] = 3 * ((pos1D[i + 2] - pos1D[i + 1]) / h[i + 1] - (pos1D[i + 1] - pos1D[i]) / h[i]); A[i][i] = 2 * (h[i] + h[i + 1]); if (i > 0) { A[i][i - 1] = h[i]; } if (i < N - 3) { A[i][i + 1] = h[i + 1]; } } solve(A, y); for (int i = 0; i < N - 2; i++) { c[i + 1] = y[i]; b[i] = (a[i + 1] - a[i]) / h[i] - (2 * c[i] + c[i + 1]) / 3 * h[i]; d[i] = (c[i + 1] - c[i]) / (3 * h[i]); } b[N - 2] = (a[N - 1] - a[N - 2]) / h[N - 2] - (2 * c[N - 2] + c[N - 1]) / 3 * h[N - 2]; d[N - 2] = (c[N - 1] - c[N - 2]) / (3 * h[N - 2]); } /** * Solves Ax=b and stores the solution in b. */ public void solve(double[][] A, double[] b) { int n = b.length; for (int i = 1; i < n; i++) { A[i][i - 1] = A[i][i - 1] / A[i - 1][i - 1]; A[i][i] = A[i][i] - A[i - 1][i] * A[i][i - 1]; b[i] = b[i] - A[i][i - 1] * b[i - 1]; } b[n - 1] = b[n - 1] / A[n - 1][n - 1]; for (int i = b.length - 2; i >= 0; i--) { b[i] = (b[i] - A[i][i + 1] * b[i + 1]) / A[i][i]; } } }