/* * Copyright (c) 2009-2014, Peter Abeles, Mike Anderson. All Rights Reserved. * * This file contains code that was originally part of Efficient Java Matrix Library (EJML), * modified by Mike Anderson and other contributors for inclusion in Vectorz * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package mikera.matrixx.solve.impl; import mikera.matrixx.AMatrix; import mikera.matrixx.Matrix; import mikera.matrixx.decompose.ICholeskyResult; import mikera.matrixx.decompose.impl.chol.Cholesky; /** * @author Peter Abeles */ public class CholeskySolver { protected Matrix A; protected int numRows; protected int numCols; private ICholeskyResult ans; private int n; private double vv[]; private double t[]; public boolean setA(AMatrix _A) { // copied code from _setA to setA and created a copy of input matrix // so that it is not modified // _setA(A.toMatrix()); this.A = Matrix.create(_A); this.numRows = A.rowCount(); this.numCols = A.columnCount(); ans = Cholesky.decompose(A); if( ans != null ){ n = A.columnCount(); // vv = decomp._getVV(); vv = new double[A.rowCount()]; t = ans.getL().toMatrix().data; return true; } else { return false; } } // protected void _setA(Matrix A) { // this.A = A; // this.numRows = A.rowCount(); // this.numCols = A.columnCount(); // } public double quality() { return qualityTriangular(ans.getL().toMatrix()); } /** * Computes the quality of a triangular matrix, where the quality of a matrix * is defined in {@link org.ejml.factory.LinearSolver#quality()}. In * this situation the quality os the absolute value of the product of * each diagonal element divided by the magnitude of the largest diagonal element. * If all diagonal elements are zero then zero is returned. * * @param upper if it is upper triangular or not. * @param T A matrix. @return product of the diagonal elements. * @return the quality of the system. */ // Taken from SpecializedOps private double qualityTriangular(Matrix T) { int N = Math.min(T.rowCount(),T.columnCount()); // TODO make faster by just checking the upper triangular portion double max = elementMaxAbs(T); if( max == 0.0d ) return 0.0d; double quality = 1.0; for( int i = 0; i < N; i++ ) { quality *= T.unsafeGet(i,i)/max; } return Math.abs(quality); } /** * <p> * Returns the absolute value of the element in the matrix that has the largest absolute value.<br> * <br> * Max{ |a<sub>ij</sub>| } for all i and j<br> * </p> * * @param a A matrix. Not modified. * @return The max abs element value of the matrix. */ // Taken from CommonOps private double elementMaxAbs( Matrix a ) { final long size = a.elementCount(); double[] el = a.data; double max = 0; for( int i = 0; i < size; i++ ) { double val = Math.abs(el[i]); if( val > max ) { max = val; } } return max; } /** * <p> * Using the decomposition, finds the value of 'X' in the linear equation below:<br> * * A*x = b<br> * * where A has dimension of n by n, x and b are n by m dimension. * </p> * <p> * *Note* that 'b' and 'x' can be the same matrix instance. * </p> * * @param B A matrix that is n by m. Not modified. * @param X An n by m matrix where the solution is written to. Modified. */ public AMatrix solve(AMatrix B) { Matrix X = Matrix.create(B.rowCount(), B.columnCount()); if( B.columnCount() != X.columnCount() && B.rowCount() != n && X.rowCount() != n) { throw new IllegalArgumentException("Unexpected matrix size"); } int numCols = B.columnCount(); double dataB[] = B.toMatrix().data; double dataX[] = X.data; for( int j = 0; j < numCols; j++ ) { for( int i = 0; i < n; i++ ) vv[i] = dataB[i*numCols+j]; solveInternalL(); for( int i = 0; i < n; i++ ) dataX[i*numCols+j] = vv[i]; } return X; } /** * Used internally to find the solution to a single column vector. */ private void solveInternalL() { // solve L*y=b storing y in x TriangularSolver.solveL(t,vv,n); // solve L^T*x=y TriangularSolver.solveTranL(t,vv,n); } /** * Sets the matrix 'inv' equal to the inverse of the matrix that was decomposed. * * @param inv Where the value of the inverse will be stored. Modified. */ public AMatrix invert() { Matrix inv = Matrix.create(numRows, numCols); double a[] = inv.data; setToInverseL(a); return inv; } /** * Sets the matrix to the inverse using a lower triangular matrix. */ public void setToInverseL( double a[] ) { // TODO reorder these operations to avoid cache misses // inverts the lower triangular system and saves the result // in the upper triangle to minimize cache misses for( int i =0; i < n; i++ ) { double el_ii = t[i*n+i]; for( int j = 0; j <= i; j++ ) { double sum = (i==j) ? 1.0 : 0; for( int k=i-1; k >=j; k-- ) { sum -= t[i*n+k]*a[j*n+k]; } a[j*n+i] = sum / el_ii; } } // solve the system and handle the previous solution being in the upper triangle // takes advantage of symmetry for( int i=n-1; i>=0; i-- ) { double el_ii = t[i*n+i]; for( int j = 0; j <= i; j++ ) { double sum = (i<j) ? 0 : a[j*n+i]; for( int k=i+1;k<n;k++) { sum -= t[k*n+i]*a[j*n+k]; } a[i*n+j] = a[j*n+i] = sum / el_ii; } } } }