/*
* Copyright (c) 2009-2013, Peter Abeles. All Rights Reserved.
*
* This file is part of Efficient Java Matrix Library (EJML).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package mikera.matrixx.decompose.impl.chol;
import mikera.matrixx.AMatrix;
import mikera.matrixx.decompose.ICholeskyResult;
/**
* <p>
* This implementation of a Cholesky decomposition using the inner-product form.
* For large matrices a block implementation is better. On larger matrices the lower triangular
* decomposition is significantly faster. This is faster on smaller matrices than {@link CholeskyDecompositionBlock}
* but much slower on larger matrices.
* </p>
*
* @author Peter Abeles
*/
public class CholeskyInner extends CholeskyCommon {
/**
* <p>
* Computes the Cholesky LDU Decomposition (A = LDU) of a matrix.
* </p>
* <p>
* If the matrix is not positive definite then this function will return
* null since it can't complete its computations. Not all errors will be
* found. This is an efficient way to check for positive definiteness.
* </p>
* @param mat A symmetric positive definite matrix
* @return ICholeskyResult if decomposition is successful, null otherwise.
*/
public static ICholeskyResult decompose(AMatrix mat) {
CholeskyInner temp = new CholeskyInner();
return temp._decompose(mat);
}
@Override
protected CholeskyResult decomposeLower() {
double el_ii;
double div_el_ii=0;
for( int i = 0; i < n; i++ ) {
for( int j = i; j < n; j++ ) {
double sum = t[i*n+j];
int iEl = i*n;
int jEl = j*n;
int end = iEl+i;
// k = 0:i-1
for( ; iEl<end; iEl++,jEl++ ) {
// sum -= el[i*n+k]*el[j*n+k];
sum -= t[iEl]* t[jEl];
}
if( i == j ) {
// is it positive-definite?
if( sum <= 0.0 )
return null;
el_ii = Math.sqrt(sum);
t[i*n+i] = el_ii;
div_el_ii = 1.0/el_ii;
} else {
t[j*n+i] = sum*div_el_ii;
}
}
}
// zero the top right corner.
for( int i = 0; i < n; i++ ) {
for( int j = i+1; j < n; j++ ) {
t[i*n+j] = 0.0;
}
}
return new CholeskyResult(T);
}
}