/* RISO: an implementation of distributed belief networks. * Copyright (C) 1999, Robert Dodier. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA, 02111-1307, USA, * or visit the GNU web site, www.gnu.org. */ package joshua.discriminative.training.lbfgs; /** This class implements an algorithm for multi-dimensional line search. * This file is a translation of Fortran code written by Jorge Nocedal. * It is distributed as part of the RISO project. See comments in the file * <tt>LBFGS.java</tt> for more information. */ public class Mcsrch { private static int infoc[] = new int[1], j = 0; private static double dg = 0, dgm = 0, dginit = 0, dgtest = 0, dgx[] = new double[1], dgxm[] = new double[1], dgy[] = new double[1], dgym[] = new double[1], finit = 0, ftest1 = 0, fm = 0, fx[] = new double[1], fxm[] = new double[1], fy[] = new double[1], fym[] = new double[1], p5 = 0, p66 = 0, stx[] = new double[1], sty[] = new double[1], stmin = 0, stmax = 0, width = 0, width1 = 0, xtrapf = 0; private static boolean brackt[] = new boolean[1], stage1 = false; static double sqr( double x ) { return x*x; } static double max3( double x, double y, double z ) { return x < y ? ( y < z ? z : y ) : ( x < z ? z : x ); } /** Minimize a function along a search direction. This code is * a Java translation of the function <code>MCSRCH</code> from * <code>lbfgs.f</code>, which in turn is a slight modification of * the subroutine <code>CSRCH</code> of More' and Thuente. * The changes are to allow reverse communication, and do not affect * the performance of the routine. This function, in turn, calls * <code>mcstep</code>.<p> * * The Java translation was effected mostly mechanically, with some * manual clean-up; in particular, array indices start at 0 instead of 1. * Most of the comments from the Fortran code have been pasted in here * as well.<p> * * The purpose of <code>mcsrch</code> is to find a step which satisfies * a sufficient decrease condition and a curvature condition.<p> * * At each stage this function updates an interval of uncertainty with * endpoints <code>stx</code> and <code>sty</code>. The interval of * uncertainty is initially chosen so that it contains a * minimizer of the modified function * <pre> * f(x+stp*s) - f(x) - ftol*stp*(gradf(x)'s). * </pre> * If a step is obtained for which the modified function * has a nonpositive function value and nonnegative derivative, * then the interval of uncertainty is chosen so that it * contains a minimizer of <code>f(x+stp*s)</code>.<p> * * The algorithm is designed to find a step which satisfies * the sufficient decrease condition * <pre> * f(x+stp*s) <= f(X) + ftol*stp*(gradf(x)'s), * </pre> * and the curvature condition * <pre> * abs(gradf(x+stp*s)'s)) <= gtol*abs(gradf(x)'s). * </pre> * If <code>ftol</code> is less than <code>gtol</code> and if, for example, * the function is bounded below, then there is always a step which * satisfies both conditions. If no step can be found which satisfies both * conditions, then the algorithm usually stops when rounding * errors prevent further progress. In this case <code>stp</code> only * satisfies the sufficient decrease condition.<p> * * @author Original Fortran version by Jorge J. More' and David J. Thuente * as part of the Minpack project, June 1983, Argonne National * Laboratory. Java translation by Robert Dodier, August 1997. * * @param n The number of variables. * * @param x On entry this contains the base point for the line search. * On exit it contains <code>x + stp*s</code>. * * @param f On entry this contains the value of the objective function * at <code>x</code>. On exit it contains the value of the objective * function at <code>x + stp*s</code>. * * @param g On entry this contains the gradient of the objective function * at <code>x</code>. On exit it contains the gradient at * <code>x + stp*s</code>. * * @param s The search direction. * * @param stp On entry this contains an initial estimate of a satifactory * step length. On exit <code>stp</code> contains the final estimate. * * @param ftol Tolerance for the sufficient decrease condition. * * @param xtol Termination occurs when the relative width of the interval * of uncertainty is at most <code>xtol</code>. * * @param maxfev Termination occurs when the number of evaluations of * the objective function is at least <code>maxfev</code> by the end * of an iteration. * * @param info This is an output variable, which can have these values: * <ul> * <li><code>info = 0</code> Improper input parameters. * <li><code>info = -1</code> A return is made to compute the function and gradient. * <li><code>info = 1</code> The sufficient decrease condition and * the directional derivative condition hold. * <li><code>info = 2</code> Relative width of the interval of uncertainty * is at most <code>xtol</code>. * <li><code>info = 3</code> Number of function evaluations has reached <code>maxfev</code>. * <li><code>info = 4</code> The step is at the lower bound <code>stpmin</code>. * <li><code>info = 5</code> The step is at the upper bound <code>stpmax</code>. * <li><code>info = 6</code> Rounding errors prevent further progress. * There may not be a step which satisfies the * sufficient decrease and curvature conditions. * Tolerances may be too small. * </ul> * * @param nfev On exit, this is set to the number of function evaluations. * * @param wa Temporary storage array, of length <code>n</code>. */ public static void mcsrch ( int n , double[] x , double f , double[] g , double[] s , int is0 , double[] stp , double ftol , double xtol , int maxfev , int[] info , int[] nfev , double[] wa ) { p5 = 0.5; p66 = 0.66; xtrapf = 4; if ( info[0] != - 1 ) { infoc[0] = 1; if ( n <= 0 || stp[0] <= 0 || ftol < 0 || LBFGS.gtol < 0 || xtol < 0 || LBFGS.stpmin < 0 || LBFGS.stpmax < LBFGS.stpmin || maxfev <= 0 ) return; // Compute the initial gradient in the search direction // and check that s is a descent direction. dginit = 0; for ( j = 1 ; j <= n ; j += 1 ) { dginit = dginit + g [ j -1] * s [ is0+j -1]; } if ( dginit >= 0 ) { System.out.println( "The search direction is not a descent direction." ); return; } brackt[0] = false; stage1 = true; nfev[0] = 0; finit = f; dgtest = ftol*dginit; width = LBFGS.stpmax - LBFGS.stpmin; width1 = width/p5; for ( j = 1 ; j <= n ; j += 1 ) { wa [ j -1] = x [ j -1]; } // The variables stx, fx, dgx contain the values of the step, // function, and directional derivative at the best step. // The variables sty, fy, dgy contain the value of the step, // function, and derivative at the other endpoint of // the interval of uncertainty. // The variables stp, f, dg contain the values of the step, // function, and derivative at the current step. stx[0] = 0; fx[0] = finit; dgx[0] = dginit; sty[0] = 0; fy[0] = finit; dgy[0] = dginit; } while ( true ) { if ( info[0] != -1 ) { // Set the minimum and maximum steps to correspond // to the present interval of uncertainty. if ( brackt[0] ) { stmin = Math.min ( stx[0] , sty[0] ); stmax = Math.max ( stx[0] , sty[0] ); } else { stmin = stx[0]; stmax = stp[0] + xtrapf * ( stp[0] - stx[0] ); } // Force the step to be within the bounds stpmax and stpmin. stp[0] = Math.max ( stp[0] , LBFGS.stpmin ); stp[0] = Math.min ( stp[0] , LBFGS.stpmax ); // If an unusual termination is to occur then let // stp be the lowest point obtained so far. if ( ( brackt[0] && ( stp[0] <= stmin || stp[0] >= stmax ) ) || nfev[0] >= maxfev - 1 || infoc[0] == 0 || ( brackt[0] && stmax - stmin <= xtol * stmax ) ) stp[0] = stx[0]; // Evaluate the function and gradient at stp // and compute the directional derivative. // We return to main program to obtain F and G. for ( j = 1 ; j <= n ; j += 1 ) { x [ j -1] = wa [ j -1] + stp[0] * s [ is0+j -1]; } info[0]=-1; return; } info[0]=0; nfev[0] = nfev[0] + 1; dg = 0; for ( j = 1 ; j <= n ; j += 1 ) { dg = dg + g [ j -1] * s [ is0+j -1]; } ftest1 = finit + stp[0]*dgtest; // Test for convergence. if ( ( brackt[0] && ( stp[0] <= stmin || stp[0] >= stmax ) ) || infoc[0] == 0 ) info[0] = 6; if ( stp[0] == LBFGS.stpmax && f <= ftest1 && dg <= dgtest ) info[0] = 5; if ( stp[0] == LBFGS.stpmin && ( f > ftest1 || dg >= dgtest ) ) info[0] = 4; if ( nfev[0] >= maxfev ) info[0] = 3; if ( brackt[0] && stmax - stmin <= xtol * stmax ) info[0] = 2; if ( f <= ftest1 && Math.abs ( dg ) <= LBFGS.gtol * ( - dginit ) ) info[0] = 1; // Check for termination. if ( info[0] != 0 ) return; // In the first stage we seek a step for which the modified // function has a nonpositive value and nonnegative derivative. if ( stage1 && f <= ftest1 && dg >= Math.min ( ftol , LBFGS.gtol ) * dginit ) stage1 = false; // A modified function is used to predict the step only if // we have not obtained a step for which the modified // function has a nonpositive function value and nonnegative // derivative, and if a lower function value has been // obtained but the decrease is not sufficient. if ( stage1 && f <= fx[0] && f > ftest1 ) { // Define the modified function and derivative values. fm = f - stp[0]*dgtest; fxm[0] = fx[0] - stx[0]*dgtest; fym[0] = fy[0] - sty[0]*dgtest; dgm = dg - dgtest; dgxm[0] = dgx[0] - dgtest; dgym[0] = dgy[0] - dgtest; // Call cstep to update the interval of uncertainty // and to compute the new step. mcstep ( stx , fxm , dgxm , sty , fym , dgym , stp , fm , dgm , brackt , stmin , stmax , infoc ); // Reset the function and gradient values for f. fx[0] = fxm[0] + stx[0]*dgtest; fy[0] = fym[0] + sty[0]*dgtest; dgx[0] = dgxm[0] + dgtest; dgy[0] = dgym[0] + dgtest; } else { // Call mcstep to update the interval of uncertainty // and to compute the new step. mcstep ( stx , fx , dgx , sty , fy , dgy , stp , f , dg , brackt , stmin , stmax , infoc ); } // Force a sufficient decrease in the size of the // interval of uncertainty. if ( brackt[0] ) { if ( Math.abs ( sty[0] - stx[0] ) >= p66 * width1 ) stp[0] = stx[0] + p5 * ( sty[0] - stx[0] ); width1 = width; width = Math.abs ( sty[0] - stx[0] ); } } } /** The purpose of this function is to compute a safeguarded step for * a linesearch and to update an interval of uncertainty for * a minimizer of the function.<p> * * The parameter <code>stx</code> contains the step with the least function * value. The parameter <code>stp</code> contains the current step. It is * assumed that the derivative at <code>stx</code> is negative in the * direction of the step. If <code>brackt[0]</code> is <code>true</code> * when <code>mcstep</code> returns then a * minimizer has been bracketed in an interval of uncertainty * with endpoints <code>stx</code> and <code>sty</code>.<p> * * Variables that must be modified by <code>mcstep</code> are * implemented as 1-element arrays. * * @param stx Step at the best step obtained so far. * This variable is modified by <code>mcstep</code>. * @param fx Function value at the best step obtained so far. * This variable is modified by <code>mcstep</code>. * @param dx Derivative at the best step obtained so far. The derivative * must be negative in the direction of the step, that is, <code>dx</code> * and <code>stp-stx</code> must have opposite signs. * This variable is modified by <code>mcstep</code>. * * @param sty Step at the other endpoint of the interval of uncertainty. * This variable is modified by <code>mcstep</code>. * @param fy Function value at the other endpoint of the interval of uncertainty. * This variable is modified by <code>mcstep</code>. * @param dy Derivative at the other endpoint of the interval of * uncertainty. This variable is modified by <code>mcstep</code>. * * @param stp Step at the current step. If <code>brackt</code> is set * then on input <code>stp</code> must be between <code>stx</code> * and <code>sty</code>. On output <code>stp</code> is set to the * new step. * @param fp Function value at the current step. * @param dp Derivative at the current step. * * @param brackt Tells whether a minimizer has been bracketed. * If the minimizer has not been bracketed, then on input this * variable must be set <code>false</code>. If the minimizer has * been bracketed, then on output this variable is <code>true</code>. * * @param stpmin Lower bound for the step. * @param stpmax Upper bound for the step. * * @param info On return from <code>mcstep</code>, this is set as follows: * If <code>info</code> is 1, 2, 3, or 4, then the step has been * computed successfully. Otherwise <code>info</code> = 0, and this * indicates improper input parameters. * * @author Jorge J. More, David J. Thuente: original Fortran version, * as part of Minpack project. Argonne Nat'l Laboratory, June 1983. * Robert Dodier: Java translation, August 1997. */ public static void mcstep ( double[] stx , double[] fx , double[] dx , double[] sty , double[] fy , double[] dy , double[] stp , double fp , double dp , boolean[] brackt , double stpmin , double stpmax , int[] info ) { boolean bound; double gamma, p, q, r, s, sgnd, stpc, stpf, stpq, theta; info[0] = 0; if ( ( brackt[0] && ( stp[0] <= Math.min ( stx[0] , sty[0] ) || stp[0] >= Math.max ( stx[0] , sty[0] ) ) ) || dx[0] * ( stp[0] - stx[0] ) >= 0.0 || stpmax < stpmin ) return; // Determine if the derivatives have opposite sign. sgnd = dp * ( dx[0] / Math.abs ( dx[0] ) ); if ( fp > fx[0] ) { // First case. A higher function value. // The minimum is bracketed. If the cubic step is closer // to stx than the quadratic step, the cubic step is taken, // else the average of the cubic and quadratic steps is taken. info[0] = 1; bound = true; theta = 3 * ( fx[0] - fp ) / ( stp[0] - stx[0] ) + dx[0] + dp; s = max3 ( Math.abs ( theta ) , Math.abs ( dx[0] ) , Math.abs ( dp ) ); gamma = s * Math.sqrt ( sqr( theta / s ) - ( dx[0] / s ) * ( dp / s ) ); if ( stp[0] < stx[0] ) gamma = - gamma; p = ( gamma - dx[0] ) + theta; q = ( ( gamma - dx[0] ) + gamma ) + dp; r = p/q; stpc = stx[0] + r * ( stp[0] - stx[0] ); stpq = stx[0] + ( ( dx[0] / ( ( fx[0] - fp ) / ( stp[0] - stx[0] ) + dx[0] ) ) / 2 ) * ( stp[0] - stx[0] ); if ( Math.abs ( stpc - stx[0] ) < Math.abs ( stpq - stx[0] ) ) { stpf = stpc; } else { stpf = stpc + ( stpq - stpc ) / 2; } brackt[0] = true; } else if ( sgnd < 0.0 ) { // Second case. A lower function value and derivatives of // opposite sign. The minimum is bracketed. If the cubic // step is closer to stx than the quadratic (secant) step, // the cubic step is taken, else the quadratic step is taken. info[0] = 2; bound = false; theta = 3 * ( fx[0] - fp ) / ( stp[0] - stx[0] ) + dx[0] + dp; s = max3 ( Math.abs ( theta ) , Math.abs ( dx[0] ) , Math.abs ( dp ) ); gamma = s * Math.sqrt ( sqr( theta / s ) - ( dx[0] / s ) * ( dp / s ) ); if ( stp[0] > stx[0] ) gamma = - gamma; p = ( gamma - dp ) + theta; q = ( ( gamma - dp ) + gamma ) + dx[0]; r = p/q; stpc = stp[0] + r * ( stx[0] - stp[0] ); stpq = stp[0] + ( dp / ( dp - dx[0] ) ) * ( stx[0] - stp[0] ); if ( Math.abs ( stpc - stp[0] ) > Math.abs ( stpq - stp[0] ) ) { stpf = stpc; } else { stpf = stpq; } brackt[0] = true; } else if ( Math.abs ( dp ) < Math.abs ( dx[0] ) ) { // Third case. A lower function value, derivatives of the // same sign, and the magnitude of the derivative decreases. // The cubic step is only used if the cubic tends to infinity // in the direction of the step or if the minimum of the cubic // is beyond stp. Otherwise the cubic step is defined to be // either stpmin or stpmax. The quadratic (secant) step is also // computed and if the minimum is bracketed then the the step // closest to stx is taken, else the step farthest away is taken. info[0] = 3; bound = true; theta = 3 * ( fx[0] - fp ) / ( stp[0] - stx[0] ) + dx[0] + dp; s = max3 ( Math.abs ( theta ) , Math.abs ( dx[0] ) , Math.abs ( dp ) ); gamma = s * Math.sqrt ( Math.max ( 0, sqr( theta / s ) - ( dx[0] / s ) * ( dp / s ) ) ); if ( stp[0] > stx[0] ) gamma = - gamma; p = ( gamma - dp ) + theta; q = ( gamma + ( dx[0] - dp ) ) + gamma; r = p/q; if ( r < 0.0 && gamma != 0.0 ) { stpc = stp[0] + r * ( stx[0] - stp[0] ); } else if ( stp[0] > stx[0] ) { stpc = stpmax; } else { stpc = stpmin; } stpq = stp[0] + ( dp / ( dp - dx[0] ) ) * ( stx[0] - stp[0] ); if ( brackt[0] ) { if ( Math.abs ( stp[0] - stpc ) < Math.abs ( stp[0] - stpq ) ) { stpf = stpc; } else { stpf = stpq; } } else { if ( Math.abs ( stp[0] - stpc ) > Math.abs ( stp[0] - stpq ) ) { stpf = stpc; } else { stpf = stpq; } } } else { // Fourth case. A lower function value, derivatives of the // same sign, and the magnitude of the derivative does // not decrease. If the minimum is not bracketed, the step // is either stpmin or stpmax, else the cubic step is taken. info[0] = 4; bound = false; if ( brackt[0] ) { theta = 3 * ( fp - fy[0] ) / ( sty[0] - stp[0] ) + dy[0] + dp; s = max3 ( Math.abs ( theta ) , Math.abs ( dy[0] ) , Math.abs ( dp ) ); gamma = s * Math.sqrt ( sqr( theta / s ) - ( dy[0] / s ) * ( dp / s ) ); if ( stp[0] > sty[0] ) gamma = - gamma; p = ( gamma - dp ) + theta; q = ( ( gamma - dp ) + gamma ) + dy[0]; r = p/q; stpc = stp[0] + r * ( sty[0] - stp[0] ); stpf = stpc; } else if ( stp[0] > stx[0] ) { stpf = stpmax; } else { stpf = stpmin; } } // Update the interval of uncertainty. This update does not // depend on the new step or the case analysis above. if ( fp > fx[0] ) { sty[0] = stp[0]; fy[0] = fp; dy[0] = dp; } else { if ( sgnd < 0.0 ) { sty[0] = stx[0]; fy[0] = fx[0]; dy[0] = dx[0]; } stx[0] = stp[0]; fx[0] = fp; dx[0] = dp; } // Compute the new step and safeguard it. stpf = Math.min ( stpmax , stpf ); stpf = Math.max ( stpmin , stpf ); stp[0] = stpf; if ( brackt[0] && bound ) { if ( sty[0] > stx[0] ) { stp[0] = Math.min ( stx[0] + 0.66 * ( sty[0] - stx[0] ) , stp[0] ); } else { stp[0] = Math.max ( stx[0] + 0.66 * ( sty[0] - stx[0] ) , stp[0] ); } } return; } }