package joshua.discriminative.semiring_parsing; import joshua.discriminative.training.risk_annealer.hypergraph.FeatureForest; /** small scale: use a list at each node, the dense feature vector has already been stored at each hyperedge * large scale: use a hashmap at each node, and extract the sparse features from each edge on the fly **/ public abstract class MinRiskDAAbstractSemiringParser extends DefaultSemiringParser { //annealing parameters double temperature; public MinRiskDAAbstractSemiringParser(int semiring, int addMode, double scale, double temperature) { super(semiring, addMode, scale); this.temperature = temperature; } public final void setTemperature(double temperature){ this.temperature = temperature; } //@todo: parameterize the HG protected final FeatureForest getFeatureForest(){ return (FeatureForest) hg; } }