package joshua.discriminative.semiring_parsing;
import joshua.discriminative.training.risk_annealer.hypergraph.FeatureForest;
/** small scale: use a list at each node, the dense feature vector has already been stored at each hyperedge
* large scale: use a hashmap at each node, and extract the sparse features from each edge on the fly
**/
public abstract class MinRiskDAAbstractSemiringParser extends DefaultSemiringParser {
//annealing parameters
double temperature;
public MinRiskDAAbstractSemiringParser(int semiring, int addMode, double scale, double temperature) {
super(semiring, addMode, scale);
this.temperature = temperature;
}
public final void setTemperature(double temperature){
this.temperature = temperature;
}
//@todo: parameterize the HG
protected final FeatureForest getFeatureForest(){
return (FeatureForest) hg;
}
}