package org.mobicents.media.server.impl.resource.fft; import org.apache.log4j.Logger; /******************************************************************************* * Compilation: javac FFT.java Execution: java FFT N Dependencies: Complex.java * * Compute the FFT and inverse FFT of a length N complex sequence. Bare bones * implementation that runs in O(N log N) time. Our goal is to optimize the * clarity of the code, rather than performance. * * Limitations ----------- - assumes N is a power of 2 - not the most memory * efficient algorithm (because it uses an object type for representing complex * numbers and because it re-allocates memory for the subarray, instead of doing * in-place or reusing a single temporary array) * ******************************************************************************/ public class FFT { private static Logger logger = Logger.getLogger(FFT.class); // compute the FFT of x[], assuming its length is a power of 2 public Complex[] fft(Complex[] x) { int N = x.length; Complex[] y = new Complex[N]; // base case if (N == 1) { y[0] = x[0]; return y; } // radix 2 Cooley-Tukey FFT if (N % 2 != 0) throw new RuntimeException("N is not a power of 2"); Complex[] even = new Complex[N / 2]; Complex[] odd = new Complex[N / 2]; for (int k = 0; k < N / 2; k++) even[k] = x[2 * k]; for (int k = 0; k < N / 2; k++) odd[k] = x[2 * k + 1]; Complex[] q = fft(even); Complex[] r = fft(odd); for (int k = 0; k < N / 2; k++) { double kth = -2 * k * Math.PI / N; Complex wk = new Complex(Math.cos(kth), Math.sin(kth)); y[k] = q[k].plus(wk.times(r[k])); y[k + N / 2] = q[k].minus(wk.times(r[k])); } return y; } // compute the inverse FFT of x[], assuming its length is a power of 2 /* * public static Complex[] ifft(Complex[] x) { int N = x.length; Complex[] y = * new Complex[N]; // take conjugate for (int i = 0; i < N; i++) { y[i] = * x[i].conjugate(); } // compute forward FFT y = fft(y); // take conjugate * again for (int i = 0; i < N; i++) { y[i] = y[i].conjugate(); } // divide * by N for (int i = 0; i < N; i++) { y[i] = y[i].times(1.0 / N); } * * return y; } // compute the circular convolution of x and y public static * Complex[] cconvolve(Complex[] x, Complex[] y) { // should probably pad x * and y with 0s so that they have same length // and are powers of 2 if * (x.length != y.length) { throw new RuntimeException("Dimensions don't * agree"); } * * int N = x.length; // compute FFT of each sequence Complex[] a = fft(x); * Complex[] b = fft(y); // point-wise multiply Complex[] c = new * Complex[N]; for (int i = 0; i < N; i++) { c[i] = a[i].times(b[i]); } // * compute inverse FFT return ifft(c); } // compute the linear convolution * of x and y public static Complex[] convolve(Complex[] x, Complex[] y) { * Complex ZERO = new Complex(0, 0); * * Complex[] a = new Complex[2 * x.length]; for (int i = 0; i < x.length; * i++) a[i] = x[i]; for (int i = x.length; i < 2 * x.length; i++) a[i] = * ZERO; * * Complex[] b = new Complex[2 * y.length]; for (int i = 0; i < y.length; * i++) b[i] = y[i]; for (int i = y.length; i < 2 * y.length; i++) b[i] = * ZERO; * * return cconvolve(a, b); } // display an array of Complex numbers to * standard output * */ public static void show(Complex[] x, String title) { logger.debug(title); logger.debug("-------------------"); for (int i = 0; i < x.length; i++) { logger.debug(x[i]); } logger.debug(""); } }