/** * Copyright 2004-2006 DFKI GmbH. * All Rights Reserved. Use is subject to license terms. * * This file is part of MARY TTS. * * MARY TTS is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ package marytts.signalproc.filter; import static org.junit.Assert.assertTrue; import javax.sound.sampled.AudioInputStream; import javax.sound.sampled.AudioSystem; import marytts.util.data.audio.AudioDoubleDataSource; import marytts.util.math.FFTTest; import marytts.util.math.MathUtils; import org.junit.Test; /** * @author Marc Schröder * */ public class FilterTest { @Test public void testSameLength() { int samplingFrequency = 16000; double lengthInSeconds = 0.01; int lengthInSamples = (int) (lengthInSeconds * samplingFrequency); int signalFrequency = 1000; // in Hz double[] signal = FFTTest.getSampleSignal(lengthInSamples, samplingFrequency, signalFrequency); int cutoffFrequencyInHz = 100; double normalisedCutoff = (double) cutoffFrequencyInHz / samplingFrequency; HighPassFilter filter = new HighPassFilter(normalisedCutoff); double[] result = filter.apply(signal); /* * SignalGraph graph = new SignalGraph(signal, samplingFrequency); graph.showInJFrame("Test signal", true, true); * SignalGraph graph2 = new SignalGraph(result, samplingFrequency); graph2.showInJFrame("Test result", true, true); try * {Thread.sleep(100000);} catch(Exception e) {} */ assertTrue("Result has length " + result.length + " instead of expected " + signal.length + " (impulse response length is " + filter.getImpulseResponseLength() + ")", result.length == signal.length); } @Test public void highPassFilter() { int samplingFrequency = 16000; double lengthInSeconds = 0.01; int lengthInSamples = (int) (lengthInSeconds * samplingFrequency); int signalFrequency = 1000; // in Hz double[] signal = FFTTest.getSampleSignal(lengthInSamples, samplingFrequency, signalFrequency); int cutoffFrequencyInHz = 50; double normalisedCutoff = (double) cutoffFrequencyInHz / samplingFrequency; FIRFilter filter = new HighPassFilter(normalisedCutoff, 0.002); double[] result = filter.apply(signal); double err = MathUtils.sumSquaredError(signal, result); double criterion = 0.01; /* * if (err > criterion) { SignalGraph graph = new SignalGraph(signal, samplingFrequency); graph.addDataSeries(result, * Color.RED, FunctionGraph.DRAW_LINE, -1); graph.showInJFrame("Test signal", true, true); try {Thread.sleep(100000);} * catch(Exception e) {} } */ assertTrue("Error: " + err, err < criterion); } @Test public void lowPassFilter() throws Exception { AudioInputStream ais = AudioSystem.getAudioInputStream(FilterTest.class.getResourceAsStream("arctic_a0123.wav")); double[] signal = new AudioDoubleDataSource(ais).getAllData(); double normalisedCutoff = 0.5 - 1.e-10; // i.e., low-pass filter at the Nyquist frequency -- expect identity double[] result = new LowPassFilter(normalisedCutoff, 0.002).apply(signal); double err = MathUtils.sumSquaredError(signal, result); double criterion = 1.e-20; assertTrue("Error: " + err, err < criterion); } }