// License: GPL v3 or later courtesy of author Kevin Wayne package edu.princeton.cs.algs4; /************************************************************************* * Compilation: javac DijkstraSP.java * Execution: java DijkstraSP input.txt s * Dependencies: EdgeWeightedDigraph.java IndexMinPQ.java Stack.java DirectedEdge.java * Data files: http://algs4.cs.princeton.edu/44sp/tinyEWD.txt * http://algs4.cs.princeton.edu/44sp/mediumEWD.txt * http://algs4.cs.princeton.edu/44sp/largeEWD.txt * * Dijkstra's algorithm. Computes the shortest path tree. * Assumes all weights are nonnegative. * * % java DijkstraSP tinyEWD.txt 0 * 0 to 0 (0.00) * 0 to 1 (1.05) 0->4 0.38 4->5 0.35 5->1 0.32 * 0 to 2 (0.26) 0->2 0.26 * 0 to 3 (0.99) 0->2 0.26 2->7 0.34 7->3 0.39 * 0 to 4 (0.38) 0->4 0.38 * 0 to 5 (0.73) 0->4 0.38 4->5 0.35 * 0 to 6 (1.51) 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52 * 0 to 7 (0.60) 0->2 0.26 2->7 0.34 * * % java DijkstraSP mediumEWD.txt 0 * 0 to 0 (0.00) * 0 to 1 (0.71) 0->44 0.06 44->93 0.07 ... 107->1 0.07 * 0 to 2 (0.65) 0->44 0.06 44->231 0.10 ... 42->2 0.11 * 0 to 3 (0.46) 0->97 0.08 97->248 0.09 ... 45->3 0.12 * 0 to 4 (0.42) 0->44 0.06 44->93 0.07 ... 77->4 0.11 * ... * *************************************************************************/ public class DijkstraSP { private double[] distTo; // distTo[v] = distance of shortest s->v path private DirectedEdge[] edgeTo; // edgeTo[v] = last edge on shortest s->v path private IndexMinPQ<Double> pq; // priority queue of vertices public DijkstraSP(EdgeWeightedDigraph G, int s) { distTo = new double[G.V()]; edgeTo = new DirectedEdge[G.V()]; for (int v = 0; v < G.V(); v++) distTo[v] = Double.POSITIVE_INFINITY; distTo[s] = 0.0; // relax vertices in order of distance from s pq = new IndexMinPQ<>(G.V()); pq.insert(s, distTo[s]); int count = 0; while (!pq.isEmpty()) { int v = pq.delMin(); for (DirectedEdge e : G.adj(v)) relax(e); count++; if (count > G.V()) throw new RuntimeException("Exceeded limit"); } // check optimality conditions assert check(G, s); } // relax edge e and update pq if changed private void relax(DirectedEdge e) { int v = e.from(), w = e.to(); if (distTo[w] > distTo[v] + e.weight()) { distTo[w] = distTo[v] + e.weight(); edgeTo[w] = e; if (pq.contains(w)) pq.change(w, distTo[w]); else pq.insert(w, distTo[w]); } } // length of shortest path from s to v public double distTo(int v) { return distTo[v]; } // is there a path from s to v? public boolean hasPathTo(int v) { return distTo[v] < Double.POSITIVE_INFINITY; } // shortest path from s to v as an Iterable, null if no such path public Iterable<DirectedEdge> pathTo(int v) { if (!hasPathTo(v)) return null; Stack<DirectedEdge> path = new Stack<>(); for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) { path.push(e); } return path; } // check optimality conditions: // (i) for all edges e: distTo[e.to()] <= distTo[e.from()] + e.weight() // (ii) for all edge e on the SPT: distTo[e.to()] == distTo[e.from()] + e.weight() private boolean check(EdgeWeightedDigraph G, int s) { // check that edge weights are nonnegative for (DirectedEdge e : G.edges()) { if (e.weight() < 0) { System.err.println("negative edge weight detected"); return false; } } // check that distTo[v] and edgeTo[v] are consistent if (distTo[s] != 0.0 || edgeTo[s] != null) { System.err.println("distTo[s] and edgeTo[s] inconsistent"); return false; } for (int v = 0; v < G.V(); v++) { if (v == s) continue; if (edgeTo[v] == null && distTo[v] != Double.POSITIVE_INFINITY) { System.err.println("distTo[] and edgeTo[] inconsistent"); return false; } } // check that all edges e = v->w satisfy distTo[w] <= distTo[v] + e.weight() for (int v = 0; v < G.V(); v++) { for (DirectedEdge e : G.adj(v)) { int w = e.to(); if (distTo[v] + e.weight() < distTo[w]) { System.err.println("edge " + e + " not relaxed"); return false; } } } // check that all edges e = v->w on SPT satisfy distTo[w] == distTo[v] + e.weight() for (int w = 0; w < G.V(); w++) { if (edgeTo[w] == null) continue; DirectedEdge e = edgeTo[w]; int v = e.from(); if (w != e.to()) return false; if (distTo[v] + e.weight() != distTo[w]) { System.err.println("edge " + e + " on shortest path not tight"); return false; } } return true; } // public static void main(String[] args) { // In in = new In(args[0]); // EdgeWeightedDigraph G = new EdgeWeightedDigraph(in); // int s = Integer.parseInt(args[1]); // // // compute shortest paths // DijkstraSP sp = new DijkstraSP(G, s); // // // // print shortest path // for (int t = 0; t < G.V(); t++) { // if (sp.hasPathTo(t)) { // StdOut.printf("%d to %d (%.2f) ", s, t, sp.distTo(t)); // if (sp.hasPathTo(t)) { // for (DirectedEdge e : sp.pathTo(t)) { // StdOut.print(e + " "); // } // } // StdOut.println(); // } // else { // StdOut.printf("%d to %d no path\n", s, t); // } // } // } }