/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.tez.mapreduce.examples; import java.io.IOException; import java.util.StringTokenizer; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.JobID; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.TypeConverter; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; import org.apache.hadoop.yarn.api.records.ApplicationId; import org.apache.tez.client.TezClient; import org.apache.tez.dag.api.TezConfiguration; import org.apache.tez.dag.api.TezException; import org.apache.tez.dag.api.client.DAGClient; import org.apache.tez.dag.api.client.DAGStatus; import org.apache.tez.mapreduce.hadoop.MRJobConfig; import org.apache.tez.mapreduce.hadoop.MultiStageMRConfigUtil; /** * Simple example that does a GROUP BY ORDER BY in an MRR job * Consider a query such as * Select DeptName, COUNT(*) as cnt FROM EmployeeTable * GROUP BY DeptName ORDER BY cnt; * * i.e. List all departments with count of employees in each department * and ordered based on department's employee count. * * Requires an Input file containing 2 strings per line in format of * <EmployeeName> <DeptName> * * For example, use the following: * * #/bin/bash * * i=1000000 * j=1000 * * id=0 * while [[ "$id" -ne "$i" ]] * do * id=`expr $id + 1` * deptId=`expr $RANDOM % $j + 1` * deptName=`echo "ibase=10;obase=16;$deptId" | bc` * echo "$id O$deptName" * done * */ public class GroupByOrderByMRRTest extends Configured implements Tool { private static final Log LOG = LogFactory.getLog(GroupByOrderByMRRTest.class); /** * Mapper takes in a single line as input containing * employee name and department name and then * emits department name with count of 1 */ public static class MyMapper extends Mapper<Object, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private final static Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); String empName = ""; String deptName = ""; if (itr.hasMoreTokens()) { empName = itr.nextToken(); if (itr.hasMoreTokens()) { deptName = itr.nextToken(); } if (!empName.isEmpty() && !deptName.isEmpty()) { word.set(deptName); context.write(word, one); } } } } /** * Intermediate reducer aggregates the total count per department. * It takes department name and count as input and emits the final * count per department name. */ public static class MyGroupByReducer extends Reducer<Text, IntWritable, IntWritable, Text> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(result, key); } } /** * Shuffle ensures ordering based on count of employees per department * hence the final reducer is a no-op and just emits the department name * with the employee count per department. */ public static class MyOrderByNoOpReducer extends Reducer<IntWritable, Text, Text, IntWritable> { public void reduce(IntWritable key, Iterable<Text> values, Context context ) throws IOException, InterruptedException { for (Text word : values) { context.write(word, key); } } } @Override public int run(String[] args) throws Exception { Configuration conf = getConf(); // Configure intermediate reduces conf.setInt(MRJobConfig.MRR_INTERMEDIATE_STAGES, 1); // Set reducer class for intermediate reduce conf.setClass(MultiStageMRConfigUtil.getPropertyNameForIntermediateStage(1, "mapreduce.job.reduce.class"), MyGroupByReducer.class, Reducer.class); // Set reducer output key class conf.setClass(MultiStageMRConfigUtil.getPropertyNameForIntermediateStage(1, "mapreduce.map.output.key.class"), IntWritable.class, Object.class); // Set reducer output value class conf.setClass(MultiStageMRConfigUtil.getPropertyNameForIntermediateStage(1, "mapreduce.map.output.value.class"), Text.class, Object.class); conf.setInt(MultiStageMRConfigUtil.getPropertyNameForIntermediateStage(1, "mapreduce.job.reduces"), 2); String[] otherArgs = new GenericOptionsParser(conf, args). getRemainingArgs(); if (otherArgs.length != 2) { System.err.println("Usage: groupbyorderbymrrtest <in> <out>"); ToolRunner.printGenericCommandUsage(System.err); return 2; } @SuppressWarnings("deprecation") Job job = new Job(conf, "groupbyorderbymrrtest"); job.setJarByClass(GroupByOrderByMRRTest.class); // Configure map job.setMapperClass(MyMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); // Configure reduce job.setReducerClass(MyOrderByNoOpReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); job.setNumReduceTasks(1); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); job.submit(); JobID jobId = job.getJobID(); ApplicationId appId = TypeConverter.toYarn(jobId).getAppId(); DAGClient dagClient = TezClient.getDAGClient(appId, new TezConfiguration(conf)); DAGStatus dagStatus; String[] vNames = { "initialmap" , "ireduce1" , "finalreduce" }; while (true) { dagStatus = dagClient.getDAGStatus(null); if(dagStatus.getState() == DAGStatus.State.RUNNING || dagStatus.getState() == DAGStatus.State.SUCCEEDED || dagStatus.getState() == DAGStatus.State.FAILED || dagStatus.getState() == DAGStatus.State.KILLED || dagStatus.getState() == DAGStatus.State.ERROR) { break; } try { Thread.sleep(500); } catch (InterruptedException e) { // continue; } } while (dagStatus.getState() == DAGStatus.State.RUNNING) { try { ExampleDriver.printDAGStatus(dagClient, vNames); try { Thread.sleep(1000); } catch (InterruptedException e) { // continue; } dagStatus = dagClient.getDAGStatus(null); } catch (TezException e) { LOG.fatal("Failed to get application progress. Exiting"); return -1; } } ExampleDriver.printDAGStatus(dagClient, vNames); LOG.info("Application completed. " + "FinalState=" + dagStatus.getState()); return dagStatus.getState() == DAGStatus.State.SUCCEEDED ? 0 : 1; } public static void main(String[] args) throws Exception { Configuration configuration = new Configuration(); GroupByOrderByMRRTest groupByOrderByMRRTest = new GroupByOrderByMRRTest(); int status = ToolRunner.run(configuration, groupByOrderByMRRTest, args); System.exit(status); } }