/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.distribution;
import java.io.Serializable;
import org.apache.commons.math.MathException;
import org.apache.commons.math.MathRuntimeException;
/**
* The default implementation of {@link ExponentialDistribution}.
*
* @version $Revision: 925900 $ $Date: 2010-03-21 17:10:07 -0400 (Sun, 21 Mar 2010) $
*/
public class ExponentialDistributionImpl extends AbstractContinuousDistribution
implements ExponentialDistribution, Serializable {
/**
* Default inverse cumulative probability accuracy
*
* @since 2.1
*/
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
/**
* Serializable version identifier
*/
private static final long serialVersionUID = 2401296428283614780L;
/**
* The mean of this distribution.
*/
private double mean;
/**
* Inverse cumulative probability accuracy
*/
private final double solverAbsoluteAccuracy;
/**
* Create a exponential distribution with the given mean.
*
* @param mean mean of this distribution.
*/
public ExponentialDistributionImpl(double mean) {
this(mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
}
/**
* Create a exponential distribution with the given mean.
*
* @param mean mean of this distribution.
* @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
* (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
* @since 2.1
*/
public ExponentialDistributionImpl(double mean, double inverseCumAccuracy) {
super();
setMeanInternal(mean);
solverAbsoluteAccuracy = inverseCumAccuracy;
}
/**
* Modify the mean.
*
* @param mean the new mean.
* @throws IllegalArgumentException if <code>mean</code> is not positive.
* @deprecated as of 2.1 (class will become immutable in 3.0)
*/
@Override
@Deprecated
public void setMean(double mean) {
setMeanInternal(mean);
}
/**
* Modify the mean.
*
* @param newMean the new mean.
* @throws IllegalArgumentException if <code>newMean</code> is not positive.
*/
private void setMeanInternal(double newMean) {
if (newMean <= 0.0) {
throw MathRuntimeException.createIllegalArgumentException(
"mean must be positive ({0})", newMean);
}
this.mean = newMean;
}
/**
* Access the mean.
*
* @return the mean.
*/
@Override
public double getMean() {
return mean;
}
/**
* Return the probability density for a particular point.
*
* @param x The point at which the density should be computed.
* @return The pdf at point x.
* @deprecated - use density(double)
*/
@Deprecated
@Override
public double density(Double x) {
return density(x.doubleValue());
}
/**
* Return the probability density for a particular point.
*
* @param x The point at which the density should be computed.
* @return The pdf at point x.
* @since 2.1
*/
@Override
public double density(double x) {
if (x < 0) {
return 0;
}
return Math.exp(-x / mean) / mean;
}
/**
* For this distribution, X, this method returns P(X < x).
* <p/>
* The implementation of this method is based on:
* <ul>
* <li>
* <a href="http://mathworld.wolfram.com/ExponentialDistribution.html">
* Exponential Distribution</a>, equation (1).</li>
* </ul>
*
* @param x the value at which the CDF is evaluated.
* @return CDF for this distribution.
* @throws MathException if the cumulative probability can not be
* computed due to convergence or other numerical errors.
*/
@Override
public double cumulativeProbability(double x) throws MathException {
double ret;
if (x <= 0.0) {
ret = 0.0;
} else {
ret = 1.0 - Math.exp(-x / mean);
}
return ret;
}
/**
* For this distribution, X, this method returns the critical point x, such
* that P(X < x) = <code>p</code>.
* <p>
* Returns 0 for p=0 and <code>Double.POSITIVE_INFINITY</code> for p=1.</p>
*
* @param p the desired probability
* @return x, such that P(X < x) = <code>p</code>
* @throws MathException if the inverse cumulative probability can not be
* computed due to convergence or other numerical errors.
* @throws IllegalArgumentException if p < 0 or p > 1.
*/
@Override
public double inverseCumulativeProbability(double p) throws MathException {
double ret;
if (p < 0.0 || p > 1.0) {
throw MathRuntimeException.createIllegalArgumentException(
"{0} out of [{1}, {2}] range", p, 0.0, 1.0);
} else if (p == 1.0) {
ret = Double.POSITIVE_INFINITY;
} else {
ret = -mean * Math.log(1.0 - p);
}
return ret;
}
/**
* Access the domain value lower bound, based on <code>p</code>, used to
* bracket a CDF root.
*
* @param p the desired probability for the critical value
* @return domain value lower bound, i.e.
* P(X < <i>lower bound</i>) < <code>p</code>
*/
@Override
protected double getDomainLowerBound(double p) {
return 0;
}
/**
* Access the domain value upper bound, based on <code>p</code>, used to
* bracket a CDF root.
*
* @param p the desired probability for the critical value
* @return domain value upper bound, i.e.
* P(X < <i>upper bound</i>) > <code>p</code>
*/
@Override
protected double getDomainUpperBound(double p) {
// NOTE: exponential is skewed to the left
// NOTE: therefore, P(X < μ) > .5
if (p < .5) {
// use mean
return mean;
} else {
// use max
return Double.MAX_VALUE;
}
}
/**
* Access the initial domain value, based on <code>p</code>, used to
* bracket a CDF root.
*
* @param p the desired probability for the critical value
* @return initial domain value
*/
@Override
protected double getInitialDomain(double p) {
// TODO: try to improve on this estimate
// TODO: what should really happen here is not derive from AbstractContinuousDistribution
// TODO: because the inverse cumulative distribution is simple.
// Exponential is skewed to the left, therefore, P(X < μ) > .5
if (p < .5) {
// use 1/2 mean
return mean * .5;
} else {
// use mean
return mean;
}
}
/**
* Return the absolute accuracy setting of the solver used to estimate
* inverse cumulative probabilities.
*
* @return the solver absolute accuracy
* @since 2.1
*/
@Override
protected double getSolverAbsoluteAccuracy() {
return solverAbsoluteAccuracy;
}
}