/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import org.apache.commons.math.MathException; import org.apache.commons.math.MathRuntimeException; import org.apache.commons.math.special.Beta; import org.apache.commons.math.special.Gamma; /** * Implements the Beta distribution. * <p> * References: * <ul> * <li><a href="http://en.wikipedia.org/wiki/Beta_distribution"> * Beta distribution</a></li> * </ul> * </p> * * @version $Revision: 925900 $ $Date: 2010-03-21 17:10:07 -0400 (Sun, 21 Mar 2010) $ * @since 2.0 */ public class BetaDistributionImpl extends AbstractContinuousDistribution implements BetaDistribution { /** * Default inverse cumulative probability accurac * * @since 2.1 */ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; /** * Serializable version identifier. */ private static final long serialVersionUID = -1221965979403477668L; /** * First shape parameter. */ private double alpha; /** * Second shape parameter. */ private double beta; /** * Normalizing factor used in density computations. * updated whenever alpha or beta are changed. */ private double z; /** * Inverse cumulative probability accuracy */ private final double solverAbsoluteAccuracy; /** * Build a new instance. * * @param alpha first shape parameter (must be positive) * @param beta second shape parameter (must be positive) * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}) * @since 2.1 */ public BetaDistributionImpl(double alpha, double beta, double inverseCumAccuracy) { this.alpha = alpha; this.beta = beta; z = Double.NaN; solverAbsoluteAccuracy = inverseCumAccuracy; } /** * Build a new instance. * * @param alpha first shape parameter (must be positive) * @param beta second shape parameter (must be positive) */ public BetaDistributionImpl(double alpha, double beta) { this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * {@inheritDoc} * * @deprecated as of 2.1 (class will become immutable in 3.0) */ @Override @Deprecated public void setAlpha(double alpha) { this.alpha = alpha; z = Double.NaN; } /** * {@inheritDoc} */ @Override public double getAlpha() { return alpha; } /** * {@inheritDoc} * * @deprecated as of 2.1 (class will become immutable in 3.0) */ @Override @Deprecated public void setBeta(double beta) { this.beta = beta; z = Double.NaN; } /** * {@inheritDoc} */ @Override public double getBeta() { return beta; } /** * Recompute the normalization factor. */ private void recomputeZ() { if (Double.isNaN(z)) { z = Gamma.logGamma(alpha) + Gamma.logGamma(beta) - Gamma.logGamma(alpha + beta); } } /** * Return the probability density for a particular point. * * @param x The point at which the density should be computed. * @return The pdf at point x. * @deprecated */ @Deprecated @Override public double density(Double x) { return density(x.doubleValue()); } /** * Return the probability density for a particular point. * * @param x The point at which the density should be computed. * @return The pdf at point x. * @since 2.1 */ @Override public double density(double x) { recomputeZ(); if (x < 0 || x > 1) { return 0; } else if (x == 0) { if (alpha < 1) { throw MathRuntimeException.createIllegalArgumentException( "Cannot compute beta density at 0 when alpha = {0,number}", alpha); } return 0; } else if (x == 1) { if (beta < 1) { throw MathRuntimeException.createIllegalArgumentException( "Cannot compute beta density at 1 when beta = %.3g", beta); } return 0; } else { double logX = Math.log(x); double log1mX = Math.log1p(-x); return Math.exp((alpha - 1) * logX + (beta - 1) * log1mX - z); } } /** * {@inheritDoc} */ @Override public double inverseCumulativeProbability(double p) throws MathException { if (p == 0) { return 0; } else if (p == 1) { return 1; } else { return super.inverseCumulativeProbability(p); } } /** * {@inheritDoc} */ @Override protected double getInitialDomain(double p) { return p; } /** * {@inheritDoc} */ @Override protected double getDomainLowerBound(double p) { return 0; } /** * {@inheritDoc} */ @Override protected double getDomainUpperBound(double p) { return 1; } /** * {@inheritDoc} */ @Override public double cumulativeProbability(double x) throws MathException { if (x <= 0) { return 0; } else if (x >= 1) { return 1; } else { return Beta.regularizedBeta(x, alpha, beta); } } /** * {@inheritDoc} */ @Override public double cumulativeProbability(double x0, double x1) throws MathException { return cumulativeProbability(x1) - cumulativeProbability(x0); } /** * Return the absolute accuracy setting of the solver used to estimate * inverse cumulative probabilities. * * @return the solver absolute accuracy * @since 2.1 */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } }