/* * Copyright (C) 2008-2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.gesture; import android.graphics.RectF; import android.util.Log; import java.util.ArrayList; import java.util.Arrays; import java.io.Closeable; import java.io.IOException; import static android.gesture.GestureConstants.*; final class GestureUtilities { private static final int TEMPORAL_SAMPLING_RATE = 16; private GestureUtilities() { } /** * Closes the specified stream. * * @param stream The stream to close. */ static void closeStream(Closeable stream) { if (stream != null) { try { stream.close(); } catch (IOException e) { Log.e(LOG_TAG, "Could not close stream", e); } } } static float[] spatialSampling(Gesture gesture, int sampleMatrixDimension) { final float targetPatchSize = sampleMatrixDimension - 1; // edge inclusive float[] sample = new float[sampleMatrixDimension * sampleMatrixDimension]; Arrays.fill(sample, 0); RectF rect = gesture.getBoundingBox(); float sx = targetPatchSize / rect.width(); float sy = targetPatchSize / rect.height(); float scale = sx < sy ? sx : sy; float preDx = -rect.centerX(); float preDy = -rect.centerY(); float postDx = targetPatchSize / 2; float postDy = targetPatchSize / 2; final ArrayList<GestureStroke> strokes = gesture.getStrokes(); final int count = strokes.size(); int size; float xpos; float ypos; for (int index = 0; index < count; index++) { final GestureStroke stroke = strokes.get(index); float[] strokepoints = stroke.points; size = strokepoints.length; final float[] pts = new float[size]; for (int i = 0; i < size; i += 2) { pts[i] = (strokepoints[i] + preDx) * scale + postDx; pts[i + 1] = (strokepoints[i + 1] + preDy) * scale + postDy; } float segmentEndX = -1; float segmentEndY = -1; for (int i = 0; i < size; i += 2) { float segmentStartX = pts[i] < 0 ? 0 : pts[i]; float segmentStartY = pts[i + 1] < 0 ? 0 : pts[i + 1]; if (segmentStartX > targetPatchSize) { segmentStartX = targetPatchSize; } if (segmentStartY > targetPatchSize) { segmentStartY = targetPatchSize; } plot(segmentStartX, segmentStartY, sample, sampleMatrixDimension); if (segmentEndX != -1) { // evaluate horizontally if (segmentEndX > segmentStartX) { xpos = (float) Math.ceil(segmentStartX); float slope = (segmentEndY - segmentStartY) / (segmentEndX - segmentStartX); while (xpos < segmentEndX) { ypos = slope * (xpos - segmentStartX) + segmentStartY; plot(xpos, ypos, sample, sampleMatrixDimension); xpos++; } } else if (segmentEndX < segmentStartX){ xpos = (float) Math.ceil(segmentEndX); float slope = (segmentEndY - segmentStartY) / (segmentEndX - segmentStartX); while (xpos < segmentStartX) { ypos = slope * (xpos - segmentStartX) + segmentStartY; plot(xpos, ypos, sample, sampleMatrixDimension); xpos++; } } // evaluating vertically if (segmentEndY > segmentStartY) { ypos = (float) Math.ceil(segmentStartY); float invertSlope = (segmentEndX - segmentStartX) / (segmentEndY - segmentStartY); while (ypos < segmentEndY) { xpos = invertSlope * (ypos - segmentStartY) + segmentStartX; plot(xpos, ypos, sample, sampleMatrixDimension); ypos++; } } else if (segmentEndY < segmentStartY) { ypos = (float) Math.ceil(segmentEndY); float invertSlope = (segmentEndX - segmentStartX) / (segmentEndY - segmentStartY); while (ypos < segmentStartY) { xpos = invertSlope * (ypos - segmentStartY) + segmentStartX; plot(xpos, ypos, sample, sampleMatrixDimension); ypos++; } } } segmentEndX = segmentStartX; segmentEndY = segmentStartY; } } return sample; } private static void plot(float x, float y, float[] sample, int sampleSize) { x = x < 0 ? 0 : x; y = y < 0 ? 0 : y; int xFloor = (int) Math.floor(x); int xCeiling = (int) Math.ceil(x); int yFloor = (int) Math.floor(y); int yCeiling = (int) Math.ceil(y); // if it's an integer if (x == xFloor && y == yFloor) { int index = yCeiling * sampleSize + xCeiling; if (sample[index] < 1){ sample[index] = 1; } } else { double topLeft = Math.sqrt(Math.pow(xFloor - x, 2) + Math.pow(yFloor - y, 2)); double topRight = Math.sqrt(Math.pow(xCeiling - x, 2) + Math.pow(yFloor - y, 2)); double btmLeft = Math.sqrt(Math.pow(xFloor - x, 2) + Math.pow(yCeiling - y, 2)); double btmRight = Math.sqrt(Math.pow(xCeiling - x, 2) + Math.pow(yCeiling - y, 2)); double sum = topLeft + topRight + btmLeft + btmRight; double value = topLeft / sum; int index = yFloor * sampleSize + xFloor; if (value > sample[index]){ sample[index] = (float) value; } value = topRight / sum; index = yFloor * sampleSize + xCeiling; if (value > sample[index]){ sample[index] = (float) value; } value = btmLeft / sum; index = yCeiling * sampleSize + xFloor; if (value > sample[index]){ sample[index] = (float) value; } value = btmRight / sum; index = yCeiling * sampleSize + xCeiling; if (value > sample[index]){ sample[index] = (float) value; } } } /** * Featurize a stroke into a vector of a given number of elements * * @param stroke * @param sampleSize * @return a float array */ static float[] temporalSampling(GestureStroke stroke, int sampleSize) { final float increment = stroke.length / (sampleSize - 1); int vectorLength = sampleSize * 2; float[] vector = new float[vectorLength]; float distanceSoFar = 0; float[] pts = stroke.points; float lstPointX = pts[0]; float lstPointY = pts[1]; int index = 0; float currentPointX = Float.MIN_VALUE; float currentPointY = Float.MIN_VALUE; vector[index] = lstPointX; index++; vector[index] = lstPointY; index++; int i = 0; int count = pts.length / 2; while (i < count) { if (currentPointX == Float.MIN_VALUE) { i++; if (i >= count) { break; } currentPointX = pts[i * 2]; currentPointY = pts[i * 2 + 1]; } float deltaX = currentPointX - lstPointX; float deltaY = currentPointY - lstPointY; float distance = (float) Math.sqrt(deltaX * deltaX + deltaY * deltaY); if (distanceSoFar + distance >= increment) { float ratio = (increment - distanceSoFar) / distance; float nx = lstPointX + ratio * deltaX; float ny = lstPointY + ratio * deltaY; vector[index] = nx; index++; vector[index] = ny; index++; lstPointX = nx; lstPointY = ny; distanceSoFar = 0; } else { lstPointX = currentPointX; lstPointY = currentPointY; currentPointX = Float.MIN_VALUE; currentPointY = Float.MIN_VALUE; distanceSoFar += distance; } } for (i = index; i < vectorLength; i += 2) { vector[i] = lstPointX; vector[i + 1] = lstPointY; } return vector; } /** * Calculate the centroid * * @param points * @return the centroid */ static float[] computeCentroid(float[] points) { float centerX = 0; float centerY = 0; int count = points.length; for (int i = 0; i < count; i++) { centerX += points[i]; i++; centerY += points[i]; } float[] center = new float[2]; center[0] = 2 * centerX / count; center[1] = 2 * centerY / count; return center; } /** * calculate the variance-covariance matrix, treat each point as a sample * * @param points * @return the covariance matrix */ private static double[][] computeCoVariance(float[] points) { double[][] array = new double[2][2]; array[0][0] = 0; array[0][1] = 0; array[1][0] = 0; array[1][1] = 0; int count = points.length; for (int i = 0; i < count; i++) { float x = points[i]; i++; float y = points[i]; array[0][0] += x * x; array[0][1] += x * y; array[1][0] = array[0][1]; array[1][1] += y * y; } array[0][0] /= (count / 2); array[0][1] /= (count / 2); array[1][0] /= (count / 2); array[1][1] /= (count / 2); return array; } static float computeTotalLength(float[] points) { float sum = 0; int count = points.length - 4; for (int i = 0; i < count; i += 2) { float dx = points[i + 2] - points[i]; float dy = points[i + 3] - points[i + 1]; sum += Math.sqrt(dx * dx + dy * dy); } return sum; } static double computeStraightness(float[] points) { float totalLen = computeTotalLength(points); float dx = points[2] - points[0]; float dy = points[3] - points[1]; return Math.sqrt(dx * dx + dy * dy) / totalLen; } static double computeStraightness(float[] points, float totalLen) { float dx = points[2] - points[0]; float dy = points[3] - points[1]; return Math.sqrt(dx * dx + dy * dy) / totalLen; } /** * Calculate the squared Euclidean distance between two vectors * * @param vector1 * @param vector2 * @return the distance */ static double squaredEuclideanDistance(float[] vector1, float[] vector2) { double squaredDistance = 0; int size = vector1.length; for (int i = 0; i < size; i++) { float difference = vector1[i] - vector2[i]; squaredDistance += difference * difference; } return squaredDistance / size; } /** * Calculate the cosine distance between two instances * * @param vector1 * @param vector2 * @return the distance between 0 and Math.PI */ static double cosineDistance(float[] vector1, float[] vector2) { float sum = 0; int len = vector1.length; for (int i = 0; i < len; i++) { sum += vector1[i] * vector2[i]; } return Math.acos(sum); } static OrientedBoundingBox computeOrientedBoundingBox(ArrayList<GesturePoint> pts) { GestureStroke stroke = new GestureStroke(pts); float[] points = temporalSampling(stroke, TEMPORAL_SAMPLING_RATE); return computeOrientedBoundingBox(points); } static OrientedBoundingBox computeOrientedBoundingBox(float[] points) { float[] meanVector = computeCentroid(points); return computeOrientedBoundingBox(points, meanVector); } static OrientedBoundingBox computeOrientedBoundingBox(float[] points, float[] centroid) { translate(points, -centroid[0], -centroid[1]); double[][] array = computeCoVariance(points); double[] targetVector = computeOrientation(array); float angle; if (targetVector[0] == 0 && targetVector[1] == 0) { angle = (float) -Math.PI/2; } else { // -PI<alpha<PI angle = (float) Math.atan2(targetVector[1], targetVector[0]); rotate(points, -angle); } float minx = Float.MAX_VALUE; float miny = Float.MAX_VALUE; float maxx = Float.MIN_VALUE; float maxy = Float.MIN_VALUE; int count = points.length; for (int i = 0; i < count; i++) { if (points[i] < minx) { minx = points[i]; } if (points[i] > maxx) { maxx = points[i]; } i++; if (points[i] < miny) { miny = points[i]; } if (points[i] > maxy) { maxy = points[i]; } } return new OrientedBoundingBox((float) (angle * 180 / Math.PI), centroid[0], centroid[1], maxx - minx, maxy - miny); } private static double[] computeOrientation(double[][] covarianceMatrix) { double[] targetVector = new double[2]; if (covarianceMatrix[0][1] == 0 || covarianceMatrix[1][0] == 0) { targetVector[0] = 1; targetVector[1] = 0; } double a = -covarianceMatrix[0][0] - covarianceMatrix[1][1]; double b = covarianceMatrix[0][0] * covarianceMatrix[1][1] - covarianceMatrix[0][1] * covarianceMatrix[1][0]; double value = a / 2; double rightside = Math.sqrt(Math.pow(value, 2) - b); double lambda1 = -value + rightside; double lambda2 = -value - rightside; if (lambda1 == lambda2) { targetVector[0] = 0; targetVector[1] = 0; } else { double lambda = lambda1 > lambda2 ? lambda1 : lambda2; targetVector[0] = 1; targetVector[1] = (lambda - covarianceMatrix[0][0]) / covarianceMatrix[0][1]; } return targetVector; } static float[] rotate(float[] points, double angle) { double cos = Math.cos(angle); double sin = Math.sin(angle); int size = points.length; for (int i = 0; i < size; i += 2) { float x = (float) (points[i] * cos - points[i + 1] * sin); float y = (float) (points[i] * sin + points[i + 1] * cos); points[i] = x; points[i + 1] = y; } return points; } static float[] translate(float[] points, float dx, float dy) { int size = points.length; for (int i = 0; i < size; i += 2) { points[i] += dx; points[i + 1] += dy; } return points; } static float[] scale(float[] points, float sx, float sy) { int size = points.length; for (int i = 0; i < size; i += 2) { points[i] *= sx; points[i + 1] *= sy; } return points; } }