/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.cassandra.dht; import java.math.BigInteger; import java.nio.ByteBuffer; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Random; import org.apache.cassandra.utils.ByteBufferUtil; import org.apache.commons.lang.ArrayUtils; import org.apache.cassandra.config.CFMetaData; import org.apache.cassandra.config.DatabaseDescriptor; import org.apache.cassandra.db.DecoratedKey; import org.apache.cassandra.service.StorageService; import org.apache.cassandra.utils.FBUtilities; import org.apache.cassandra.utils.Pair; public abstract class AbstractByteOrderedPartitioner implements IPartitioner<BytesToken> { public static final BytesToken MINIMUM = new BytesToken(ArrayUtils.EMPTY_BYTE_ARRAY); public static final BigInteger BYTE_MASK = new BigInteger("255"); public DecoratedKey<BytesToken> decorateKey(ByteBuffer key) { return new DecoratedKey<BytesToken>(getToken(key), key); } public DecoratedKey<BytesToken> convertFromDiskFormat(ByteBuffer key) { return new DecoratedKey<BytesToken>(getToken(key), key); } public BytesToken midpoint(Token ltoken, Token rtoken) { int ll,rl; ByteBuffer lb,rb; if(ltoken.token instanceof byte[]) { ll = ((byte[])ltoken.token).length; lb = ByteBuffer.wrap(((byte[])ltoken.token)); } else { ll = ((ByteBuffer)ltoken.token).remaining(); lb = (ByteBuffer)ltoken.token; } if(rtoken.token instanceof byte[]) { rl = ((byte[])rtoken.token).length; rb = ByteBuffer.wrap(((byte[])rtoken.token)); } else { rl = ((ByteBuffer)rtoken.token).remaining(); rb = (ByteBuffer)rtoken.token; } int sigbytes = Math.max(ll, rl); BigInteger left = bigForBytes(lb, sigbytes); BigInteger right = bigForBytes(rb, sigbytes); Pair<BigInteger,Boolean> midpair = FBUtilities.midpoint(left, right, 8*sigbytes); return new BytesToken(bytesForBig(midpair.left, sigbytes, midpair.right)); } /** * Convert a byte array containing the most significant of 'sigbytes' bytes * representing a big-endian magnitude into a BigInteger. */ private BigInteger bigForBytes(ByteBuffer bytes, int sigbytes) { byte[] b = new byte[sigbytes]; Arrays.fill(b, (byte) 0); // append zeros ByteBufferUtil.arrayCopy(bytes, bytes.position(), b, 0, bytes.remaining()); return new BigInteger(1, b); } /** * Convert a (positive) BigInteger into a byte array representing its magnitude. * If remainder is true, an additional byte with the high order bit enabled * will be added to the end of the array */ private byte[] bytesForBig(BigInteger big, int sigbytes, boolean remainder) { byte[] bytes = new byte[sigbytes + (remainder ? 1 : 0)]; if (remainder) { // remaining bit is the most significant in the last byte bytes[sigbytes] |= 0x80; } // bitmask for a single byte for (int i = 0; i < sigbytes; i++) { int maskpos = 8 * (sigbytes - (i + 1)); // apply bitmask and get byte value bytes[i] = (byte)(big.and(BYTE_MASK.shiftLeft(maskpos)).shiftRight(maskpos).intValue() & 0xFF); } return bytes; } public BytesToken getMinimumToken() { return MINIMUM; } public BytesToken getRandomToken() { Random r = new Random(); byte[] buffer = new byte[16]; r.nextBytes(buffer); return new BytesToken(buffer); } private final Token.TokenFactory<byte[]> tokenFactory = new Token.TokenFactory<byte[]>() { public ByteBuffer toByteArray(Token<byte[]> bytesToken) { return ByteBuffer.wrap(bytesToken.token); } public Token<byte[]> fromByteArray(ByteBuffer bytes) { return new BytesToken(bytes); } public String toString(Token<byte[]> bytesToken) { return FBUtilities.bytesToHex(bytesToken.token); } public Token<byte[]> fromString(String string) { return new BytesToken(FBUtilities.hexToBytes(string)); } }; public Token.TokenFactory<byte[]> getTokenFactory() { return tokenFactory; } public boolean preservesOrder() { return true; } public abstract BytesToken getToken(ByteBuffer key); public Map<Token, Float> describeOwnership(List<Token> sortedTokens) { // allTokens will contain the count and be returned, sorted_ranges is shorthand for token<->token math. Map<Token, Float> allTokens = new HashMap<Token, Float>(); List<Range> sortedRanges = new ArrayList<Range>(); // this initializes the counts to 0 and calcs the ranges in order. Token lastToken = sortedTokens.get(sortedTokens.size() - 1); for (Token node : sortedTokens) { allTokens.put(node, new Float(0.0)); sortedRanges.add(new Range(lastToken, node)); lastToken = node; } for (String ks : DatabaseDescriptor.getTables()) { for (CFMetaData cfmd : DatabaseDescriptor.getKSMetaData(ks).cfMetaData().values()) { for (Range r : sortedRanges) { // Looping over every KS:CF:Range, get the splits size and add it to the count allTokens.put(r.right, allTokens.get(r.right) + StorageService.instance.getSplits(ks, cfmd.cfName, r, 1).size()); } } } // Sum every count up and divide count/total for the fractional ownership. Float total = new Float(0.0); for (Float f : allTokens.values()) total += f; for (Map.Entry<Token, Float> row : allTokens.entrySet()) allTokens.put(row.getKey(), row.getValue() / total); return allTokens; } }