package org.deviceconnect.android.deviceplugin.webrtc.util; import android.graphics.ImageFormat; import android.graphics.YuvImage; import android.opengl.GLES11Ext; import android.opengl.GLES20; import org.webrtc.EglBase; import org.webrtc.GlShader; import org.webrtc.GlUtil; import org.webrtc.RendererCommon; import java.nio.ByteBuffer; import java.nio.FloatBuffer; /** * YUV converter. * * @author NTT DOCOMO, INC. */ public class YuvConverter { private final EglBase eglBase; private final GlShader shader; private boolean released = false; // Vertex coordinates in Normalized Device Coordinates, i.e. // (-1, -1) is bottom-left and (1, 1) is top-right. private static final FloatBuffer DEVICE_RECTANGLE = GlUtil.createFloatBuffer(new float[]{ -1.0f, -1.0f, // Bottom left. 1.0f, -1.0f, // Bottom right. -1.0f, 1.0f, // Top left. 1.0f, 1.0f, // Top right. }); // Texture coordinates - (0, 0) is bottom-left and (1, 1) is top-right. private static final FloatBuffer TEXTURE_RECTANGLE = GlUtil.createFloatBuffer(new float[] { 0.0f, 0.0f, // Bottom left. 1.0f, 0.0f, // Bottom right. 0.0f, 1.0f, // Top left. 1.0f, 1.0f // Top right. }); private static final String VERTEX_SHADER = "varying vec2 interp_tc;\n" + "attribute vec4 in_pos;\n" + "attribute vec4 in_tc;\n" + "\n" + "uniform mat4 texMatrix;\n" + "\n" + "void main() {\n" + " gl_Position = in_pos;\n" + " interp_tc = (texMatrix * in_tc).xy;\n" + "}\n"; private static final String FRAGMENT_SHADER = "#extension GL_OES_EGL_image_external : require\n" + "precision mediump float;\n" + "varying vec2 interp_tc;\n" + "\n" + "uniform samplerExternalOES oesTex;\n" // Difference in texture coordinate corresponding to one // sub-pixel in the x direction. + "uniform vec2 xUnit;\n" // Color conversion coefficients, including constant term + "uniform vec4 coeffs;\n" + "\n" + "void main() {\n" // Since the alpha read from the texture is always 1, this could // be written as a mat4 x vec4 multiply. However, that seems to // give a worse framerate, possibly because the additional // multiplies by 1.0 consume resources. TODO(nisse): Could also // try to do it as a vec3 x mat3x4, followed by an add in of a // constant vector. + " gl_FragColor.r = coeffs.a + dot(coeffs.rgb,\n" + " texture2D(oesTex, interp_tc - 1.5 * xUnit).rgb);\n" + " gl_FragColor.g = coeffs.a + dot(coeffs.rgb,\n" + " texture2D(oesTex, interp_tc - 0.5 * xUnit).rgb);\n" + " gl_FragColor.b = coeffs.a + dot(coeffs.rgb,\n" + " texture2D(oesTex, interp_tc + 0.5 * xUnit).rgb);\n" + " gl_FragColor.a = coeffs.a + dot(coeffs.rgb,\n" + " texture2D(oesTex, interp_tc + 1.5 * xUnit).rgb);\n" + "}\n"; private int texMatrixLoc; private int xUnitLoc; private int coeffsLoc; public YuvConverter (EglBase.Context sharedContext) { eglBase = EglBase.create(sharedContext, EglBase.CONFIG_PIXEL_RGBA_BUFFER); eglBase.createDummyPbufferSurface(); eglBase.makeCurrent(); shader = new GlShader(VERTEX_SHADER, FRAGMENT_SHADER); shader.useProgram(); texMatrixLoc = shader.getUniformLocation("texMatrix"); xUnitLoc = shader.getUniformLocation("xUnit"); coeffsLoc = shader.getUniformLocation("coeffs"); GLES20.glUniform1i(shader.getUniformLocation("oesTex"), 0); GlUtil.checkNoGLES2Error("Initialize fragment shader uniform values."); // Initialize vertex shader attributes. shader.setVertexAttribArray("in_pos", 2, DEVICE_RECTANGLE); // If the width is not a multiple of 4 pixels, the texture // will be scaled up slightly and clipped at the right border. shader.setVertexAttribArray("in_tc", 2, TEXTURE_RECTANGLE); eglBase.detachCurrent(); } public synchronized void convert(ByteBuffer buf, int width, int height, int stride, int textureId, float[] transformMatrix) { if (released) { throw new IllegalStateException( "YuvConverter.convert called on released object"); } // We draw into a buffer laid out like // // +---------+ // | | // | Y | // | | // | | // +----+----+ // | U | V | // | | | // +----+----+ // // In memory, we use the same stride for all of Y, U and V. The // U data starts at offset |height| * |stride| from the Y data, // and the V data starts at at offset |stride/2| from the U // data, with rows of U and V data alternating. // // Now, it would have made sense to allocate a pixel buffer with // a single byte per pixel (EGL10.EGL_COLOR_BUFFER_TYPE, // EGL10.EGL_LUMINANCE_BUFFER,), but that seems to be // unsupported by devices. So do the following hack: Allocate an // RGBA buffer, of width |stride|/4. To render each of these // large pixels, sample the texture at 4 different x coordinates // and store the results in the four components. // // Since the V data needs to start on a boundary of such a // larger pixel, it is not sufficient that |stride| is even, it // has to be a multiple of 8 pixels. if (stride % 8 != 0) { throw new IllegalArgumentException( "Invalid stride, must be a multiple of 8"); } if (stride < width){ throw new IllegalArgumentException( "Invalid stride, must >= width"); } int y_width = (width+3) / 4; int uv_width = (width+7) / 8; int uv_height = (height+1)/2; int total_height = height + uv_height; int size = stride * total_height; if (buf.capacity() < size) { throw new IllegalArgumentException("YuvConverter.convert called with too small buffer"); } // Produce a frame buffer starting at top-left corner, not // bottom-left. transformMatrix = RendererCommon.multiplyMatrices(transformMatrix, RendererCommon.verticalFlipMatrix()); // Create new pBuffferSurface with the correct size if needed. if (eglBase.hasSurface()) { if (eglBase.surfaceWidth() != stride/4 || eglBase.surfaceHeight() != total_height){ eglBase.releaseSurface(); eglBase.createPbufferSurface(stride/4, total_height); } } else { eglBase.createPbufferSurface(stride/4, total_height); } eglBase.makeCurrent(); GLES20.glActiveTexture(GLES20.GL_TEXTURE0); GLES20.glBindTexture(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, textureId); GLES20.glUniformMatrix4fv(texMatrixLoc, 1, false, transformMatrix, 0); // Draw Y GLES20.glViewport(0, 0, y_width, height); // Matrix * (1;0;0;0) / width. Note that opengl uses column major order. GLES20.glUniform2f(xUnitLoc, transformMatrix[0] / width, transformMatrix[1] / width); // Y'UV444 to RGB888, see // https://en.wikipedia.org/wiki/YUV#Y.27UV444_to_RGB888_conversion. // We use the ITU-R coefficients for U and V GLES20.glUniform4f(coeffsLoc, 0.299f, 0.587f, 0.114f, 0.0f); GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4); // Draw U GLES20.glViewport(0, height, uv_width, uv_height); // Matrix * (1;0;0;0) / (2*width). Note that opengl uses column major order. GLES20.glUniform2f(xUnitLoc, transformMatrix[0] / (2.0f * width), transformMatrix[1] / (2.0f * width)); GLES20.glUniform4f(coeffsLoc, -0.169f, -0.331f, 0.499f, 0.5f); GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4); // Draw V GLES20.glViewport(stride/8, height, uv_width, uv_height); GLES20.glUniform4f(coeffsLoc, 0.499f, -0.418f, -0.0813f, 0.5f); GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4); GLES20.glReadPixels(0, 0, stride / 4, total_height, GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE, buf); GlUtil.checkNoGLES2Error("YuvConverter.convert"); // Unbind texture. Reportedly needed on some devices to get // the texture updated from the camera. GLES20.glBindTexture(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, 0); eglBase.detachCurrent(); } public synchronized void release() { released = true; eglBase.makeCurrent(); shader.release(); eglBase.release(); } /** * YuvImage converter (Frame data). * @param width The width of image. * @param height The height of image. * @param yuvStrides yuvStrides array. * @param yuvPlanes yuvPlanes array. * @return YuvImage data. */ public YuvImage convertToYuvImage(final int width, final int height, final int[] yuvStrides, final ByteBuffer[] yuvPlanes) { if (yuvStrides[0] != width) { return convertToYuvImageLineByLine(width, height, yuvStrides, yuvPlanes); } if (yuvStrides[1] != width/2) { return convertToYuvImageLineByLine(width, height, yuvStrides, yuvPlanes); } if (yuvStrides[2] != width/2) { return convertToYuvImageLineByLine(width, height, yuvStrides, yuvPlanes); } byte[] bytes = new byte[yuvStrides[0] * height + yuvStrides[1] * height / 2 + yuvStrides[2] * height / 2]; ByteBuffer tmp = ByteBuffer.wrap(bytes, 0, width*height); copyPlane(yuvPlanes[0], tmp); byte[] tmparray = new byte[width / 2 * height / 2]; tmp = ByteBuffer.wrap(tmparray, 0, width / 2 * height / 2); copyPlane(yuvPlanes[2], tmp); for (int row = 0; row < height / 2; row++) { for (int col = 0; col < width / 2; col++) { bytes[width * height + row * width + col * 2] = tmparray[row * width / 2 + col]; } } copyPlane(yuvPlanes[1], tmp); for (int row = 0; row < height / 2; row++) { for (int col = 0; col < width / 2; col++) { bytes[width * height + row * width + col * 2 + 1] = tmparray[row * width / 2 + col]; } } return new YuvImage(bytes, ImageFormat.NV21, width, height, null); } /** * YuvImage converter (line by line). * @param width The width of image. * @param height The height of image. * @param yuvStrides yuvStrides array. * @param yuvPlanes yuvPlanes array. * @return YuvImage data. */ public static YuvImage convertToYuvImageLineByLine(final int width, final int height, final int[] yuvStrides, final ByteBuffer[] yuvPlanes) { byte[] bytes = new byte[width * height * 3 / 2]; byte[] yuvPlanes0 = yuvPlanes[0].array(); byte[] yuvPlanes1 = yuvPlanes[1].array(); byte[] yuvPlanes2 = yuvPlanes[2].array(); int i = 0; for (int row = 0; row < height; row++) { for (int col = 0; col < width; col++) { bytes[i++] = yuvPlanes0[col + row * yuvStrides[0]]; } } for (int row = 0; row < height / 2; row++) { for (int col = 0; col < width / 2; col++) { bytes[i++] = yuvPlanes2[col + row * yuvStrides[2]]; bytes[i++] = yuvPlanes1[col + row * yuvStrides[1]]; } } return new YuvImage(bytes, ImageFormat.NV21, width, height, null); } /** * ByteBuffer copy. * @param src source ByteBuffer. * @param dst destination ByteBuffer. */ private static void copyPlane(final ByteBuffer src, final ByteBuffer dst) { src.position(0).limit(src.capacity()); dst.put(src); dst.position(0).limit(dst.capacity()); } }