/* * The JTS Topology Suite is a collection of Java classes that * implement the fundamental operations required to validate a given * geo-spatial data set to a known topological specification. * * Copyright (C) 2001 Vivid Solutions * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * For more information, contact: * * Vivid Solutions * Suite #1A * 2328 Government Street * Victoria BC V8T 5G5 * Canada * * (250)385-6040 * www.vividsolutions.com */ package com.vividsolutions.jts.linearref; import com.vividsolutions.jts.geom.*; import com.vividsolutions.jts.util.Assert; /** * Extracts the subline of a linear {@link Geometry} between * two {@link LinearLocation}s on the line. */ class ExtractLineByLocation { /** * Computes the subline of a {@link LineString} between * two {@link LinearLocation}s on the line. * If the start location is after the end location, * the computed geometry is reversed. * * @param line the line to use as the baseline * @param start the start location * @param end the end location * @return the extracted subline */ public static Geometry extract(Geometry line, LinearLocation start, LinearLocation end) { ExtractLineByLocation ls = new ExtractLineByLocation(line); return ls.extract(start, end); } private Geometry line; public ExtractLineByLocation(Geometry line) { this.line = line; } /** * Extracts a subline of the input. * If <code>end < start</code> the linear geometry computed will be reversed. * * @param start the start location * @param end the end location * @return a linear geometry */ public Geometry extract(LinearLocation start, LinearLocation end) { if (end.compareTo(start) < 0) { return reverse(computeLinear(end, start)); } return computeLinear(start, end); } private Geometry reverse(Geometry linear) { if (linear instanceof LineString) return ((LineString) linear).reverse(); if (linear instanceof MultiLineString) return ((MultiLineString) linear).reverse(); Assert.shouldNeverReachHere("non-linear geometry encountered"); return null; } /** * Assumes input is valid (e.g. start <= end) * * @param start * @param end * @return a linear geometry */ private LineString computeLine(LinearLocation start, LinearLocation end) { Coordinate[] coordinates = line.getCoordinates(); CoordinateList newCoordinates = new CoordinateList(); int startSegmentIndex = start.getSegmentIndex(); if (start.getSegmentFraction() > 0.0) startSegmentIndex += 1; int lastSegmentIndex = end.getSegmentIndex(); if (end.getSegmentFraction() == 1.0) lastSegmentIndex += 1; if (lastSegmentIndex >= coordinates.length) lastSegmentIndex = coordinates.length - 1; // not needed - LinearLocation values should always be correct //Assert.isTrue(end.getSegmentFraction() <= 1.0, "invalid segment fraction value"); if (! start.isVertex()) newCoordinates.add(start.getCoordinate(line)); for (int i = startSegmentIndex; i <= lastSegmentIndex; i++) { newCoordinates.add(coordinates[i]); } if (! end.isVertex()) newCoordinates.add(end.getCoordinate(line)); // ensure there is at least one coordinate in the result if (newCoordinates.size() <= 0) newCoordinates.add(start.getCoordinate(line)); Coordinate[] newCoordinateArray = newCoordinates.toCoordinateArray(); /** * Ensure there is enough coordinates to build a valid line. * Make a 2-point line with duplicate coordinates, if necessary. * There will always be at least one coordinate in the coordList. */ if (newCoordinateArray.length <= 1) { newCoordinateArray = new Coordinate[] { newCoordinateArray[0], newCoordinateArray[0]}; } return line.getFactory().createLineString(newCoordinateArray); } /** * Assumes input is valid (e.g. start <= end) * * @param start * @param end * @return a linear geometry */ private Geometry computeLinear(LinearLocation start, LinearLocation end) { LinearGeometryBuilder builder = new LinearGeometryBuilder(line.getFactory()); builder.setFixInvalidLines(true); if (! start.isVertex()) builder.add(start.getCoordinate(line)); for (LinearIterator it = new LinearIterator(line, start); it.hasNext(); it.next()) { if (end.compareLocationValues(it.getComponentIndex(), it.getVertexIndex(), 0.0) < 0) break; Coordinate pt = it.getSegmentStart(); builder.add(pt); if (it.isEndOfLine()) builder.endLine(); } if (! end.isVertex()) builder.add(end.getCoordinate(line)); return builder.getGeometry(); } /** * Computes a valid and normalized location * compatible with the values in a LinearIterator. * (I.e. segmentFractions of 1.0 are converted to the next highest coordinate index) */ /* private LinearLocation normalize(LinearLocation loc) { int componentIndex = loc.getComponentIndex(); int segmentIndex = loc.getSegmentIndex(); double segmentFraction = loc.getSegmentFraction(); if (segmentFraction < 0.0) { segmentFraction = 0.0; } if (segmentFraction > 1.0) { segmentFraction = 1.0; } if (componentIndex < 0) { componentIndex = 0; segmentIndex = 0; segmentFraction = 0.0; } if (segmentIndex < 0) { segmentIndex = 0; segmentFraction = 0.0; } if (segmentFraction == 1.0) { segmentFraction = 0.0; segmentIndex += 1; } return new LinearLocation(componentIndex, segmentIndex, segmentFraction); } */ }