/* * Copyright (C) 2015 higherfrequencytrading.com * Copyright 2001-2015 The Apache Software Foundation * Copyright 2010-2012 CS Systèmes d'Information * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package net.openhft.chronicle.hash.impl.util.math; /** * Provides a generic means to evaluate continued fractions. Subclasses simply * provided the a and b coefficients to evaluate the continued fraction. * * <p> * References: * <ul> * <li><a href="http://mathworld.wolfram.com/ContinuedFraction.html"> * Continued Fraction</a></li> * </ul> * </p> * */ abstract class ContinuedFraction { /** * Access the n-th a coefficient of the continued fraction. Since a can be * a function of the evaluation point, x, that is passed in as well. * @param n the coefficient index to retrieve. * @param x the evaluation point. * @return the n-th a coefficient. */ protected abstract double getA(int n, double x); /** * Access the n-th b coefficient of the continued fraction. Since b can be * a function of the evaluation point, x, that is passed in as well. * @param n the coefficient index to retrieve. * @param x the evaluation point. * @return the n-th b coefficient. */ protected abstract double getB(int n, double x); /** * Evaluates the continued fraction at the value x. * <p> * The implementation of this method is based on the modified Lentz algorithm as described * on page 18 ff. in: * <ul> * <li> * I. J. Thompson, A. R. Barnett. "Coulomb and Bessel Functions of Complex Arguments and Order." * <a target="_blank" href="http://www.fresco.org.uk/papers/Thompson-JCP64p490.pdf"> * http://www.fresco.org.uk/papers/Thompson-JCP64p490.pdf</a> * </li> * </ul> * <b>Note:</b> the implementation uses the terms a<sub>i</sub> and b<sub>i</sub> as defined in * <a href="http://mathworld.wolfram.com/ContinuedFraction.html">Continued Fraction @ MathWorld</a>. * </p> * * @param x the evaluation point. * @param epsilon maximum error allowed. * @param maxIterations maximum number of convergents * @return the value of the continued fraction evaluated at x. * @throws IllegalStateException if the algorithm fails to converge. * @throws IllegalStateException if maximal number of iterations is reached */ public double evaluate(double x, double epsilon, int maxIterations) { final double small = 1e-50; double hPrev = getA(0, x); // use the value of small as epsilon criteria for zero checks if (Precision.isEquals(hPrev, 0.0, small)) { hPrev = small; } int n = 1; double dPrev = 0.0; double cPrev = hPrev; double hN = hPrev; while (n < maxIterations) { final double a = getA(n, x); final double b = getB(n, x); double dN = a + b * dPrev; if (Precision.isEquals(dN, 0.0, small)) { dN = small; } double cN = a + b / cPrev; if (Precision.isEquals(cN, 0.0, small)) { cN = small; } dN = 1 / dN; final double deltaN = cN * dN; hN = hPrev * deltaN; if (Double.isInfinite(hN)) { throw new IllegalStateException( "Continued fraction convergents diverged to +/- infinity for value " + x); } if (Double.isNaN(hN)) { throw new IllegalStateException( "Continued fraction diverged to NaN for value " + x); } if (Math.abs(deltaN - 1.0) < epsilon) { break; } dPrev = dN; cPrev = cN; hPrev = hN; n++; } if (n >= maxIterations) { throw new IllegalStateException( "Continued fraction convergents failed to converge (in less than " + maxIterations + " iterations) for value " + x); } return hN; } }