/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * MultiBoostAB.java * MultiBoosting is an extension to the highly successful AdaBoost technique * for forming decision committees. MultiBoosting can be viewed as combining * AdaBoost with wagging. It is able to harness both AdaBoost's high bias and * variance reduction with wagging's superior variance reduction. Using C4.5 * as the base learning algorithm, Multi-boosting is demonstrated to produce * decision committees with lower error than either AdaBoost or wagging * significantly more often than the reverse over a large representative cross-section * of UCI data sets. It offers the further advantage over AdaBoost of suiting parallel execution. * * For more info refer to : G. Webb, (2000). <i>MultiBoosting: A Technique for Combining Boosting and Wagging.</i> Machine Learning, 40(2): 159-196. * Originally based on AdaBoostM1.java * * http://www.cm.deakin.edu.au/webb * * School of Computing and Mathematics * Deakin University * Geelong, Vic, 3217, Australia * Copyright (C) 2001 Deakin University * */ package weka.classifiers.meta; import weka.classifiers.Classifier; import weka.classifiers.DistributionClassifier; import weka.classifiers.Evaluation; import weka.classifiers.Sourcable; import java.io.*; import java.util.*; import weka.core.*; /** * Class for boosting a classifier using the MultiBoosting method.<BR> * MultiBoosting is an extension to the highly successful AdaBoost technique * for forming decision committees. MultiBoosting can be viewed as combining * AdaBoost with wagging. It is able to harness both AdaBoost's high bias and * variance reduction with wagging's superior variance reduction. Using C4.5 * as the base learning algorithm, Multi-boosting is demonstrated to produce * decision committees with lower error than either AdaBoost or wagging * significantly more often than the reverse over a large representative cross-section * of UCI data sets. It offers the further advantage over AdaBoost of suiting parallel execution.<BR> * For more information, see<p> * * Geoffrey I. Webb (2000). <i>MultiBoosting: A Technique for Combining Boosting and Wagging</i>. * Machine Learning, 40(2): 159-196, Kluwer Academic Publishers, Boston<BR><BR> * * Valid options are:<p> * * -D <br> * Turn on debugging output.<p> * * -W classname <br> * Specify the full class name of a classifier as the basis for * boosting (required).<p> * * -I num <br> * Set the number of boost iterations (default 10). <p> * * -P num <br> * Set the percentage of weight mass used to build classifiers * (default 100). <p> * * -Q <br> * Use resampling instead of reweighting.<p> * * -S seed <br> * Random number seed for resampling (default 1). <p> * * -C subcommittees <br> * Number of sub-committees. (Default 3), <p> * * Options after -- are passed to the designated classifier.<p> * * @author Shane Butler (sbutle@deakin.edu.au) * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */ public class MultiBoostAB extends DistributionClassifier implements OptionHandler, WeightedInstancesHandler, Sourcable { /** Max num iterations tried to find classifier with non-zero error. */ private static int MAX_NUM_RESAMPLING_ITERATIONS = 10; /** The model base classifier to use */ protected Classifier m_Classifier = new weka.classifiers.rules.ZeroR(); /** Array for storing the generated base classifiers. */ protected Classifier [] m_Classifiers; /** Array for storing the weights for the votes. */ protected double [] m_Betas; /** The maximum number of boost iterations */ protected int m_MaxIterations = 10; /** The number of successfully generated base classifiers. */ protected int m_NumIterations; /** Weight Threshold. The percentage of weight mass used in training */ protected int m_WeightThreshold = 100; /** Debugging mode, gives extra output if true */ protected boolean m_Debug; /** Use boosting with reweighting? */ protected boolean m_UseResampling; /** Seed for boosting with resampling. */ protected int m_Seed = 1; /** The number of classes */ protected int m_NumClasses; /** The number of sub-committees to use */ protected int m_NumSubCmtys = 3; /** * Select only instances with weights that contribute to * the specified quantile of the weight distribution * * @param data the input instances * @param quantile the specified quantile eg 0.9 to select * 90% of the weight mass * @return the selected instances */ protected Instances selectWeightQuantile(Instances data, double quantile) { int numInstances = data.numInstances(); Instances trainData = new Instances(data, numInstances); double [] weights = new double [numInstances]; double sumOfWeights = 0; for(int i = 0; i < numInstances; i++) { weights[i] = data.instance(i).weight(); sumOfWeights += weights[i]; } double weightMassToSelect = sumOfWeights * quantile; int [] sortedIndices = Utils.sort(weights); // Select the instances sumOfWeights = 0; for(int i = numInstances - 1; i >= 0; i--) { Instance instance = (Instance)data.instance(sortedIndices[i]).copy(); trainData.add(instance); sumOfWeights += weights[sortedIndices[i]]; if ((sumOfWeights > weightMassToSelect) && (i > 0) && (weights[sortedIndices[i]] != weights[sortedIndices[i - 1]])) { break; } } if (m_Debug) { System.err.println("Selected " + trainData.numInstances() + " out of " + numInstances); } return trainData; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(7); newVector.addElement(new Option( "\tTurn on debugging output.", "D", 0, "-D")); newVector.addElement(new Option( "\tMaximum number of boost iterations.\n" +"\t(default 10)", "I", 1, "-I <num>")); newVector.addElement(new Option( "\tPercentage of weight mass to base training on.\n" +"\t(default 100, reduce to around 90 speed up)", "P", 1, "-P <num>")); newVector.addElement(new Option( "\tFull name of classifier to boost.\n" +"\teg: weka.classifiers.NaiveBayes", "W", 1, "-W <class name>")); newVector.addElement(new Option( "\tUse resampling for boosting.", "Q", 0, "-Q")); newVector.addElement(new Option( "\tSeed for resampling. (Default 1)", "S", 1, "-S <num>")); newVector.addElement(new Option( "\tNumber of sub-committees. (Default 10)", "C", 1, "-C <num>")); if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) { newVector.addElement(new Option( "", "", 0, "\nOptions specific to classifier " + m_Classifier.getClass().getName() + ":")); Enumeration enum = ((OptionHandler)m_Classifier).listOptions(); while (enum.hasMoreElements()) { newVector.addElement(enum.nextElement()); } } return newVector.elements(); } /** * Parses a given list of options. Valid options are:<p> * * -D <br> * Turn on debugging output.<p> * * -W classname <br> * Specify the full class name of a classifier as the basis for * boosting (required).<p> * * -I num <br> * Set the number of boost iterations (default 10). <p> * * -P num <br> * Set the percentage of weight mass used to build classifiers * (default 100). <p> * * -Q <br> * Use resampling instead of reweighting.<p> * * -S seed <br> * Random number seed for resampling (default 1).<p> * * -C subcommittees <br> * Number of sub-committees. (Default 3), <p> * * Options after -- are passed to the designated classifier.<p> * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setDebug(Utils.getFlag('D', options)); String boostIterations = Utils.getOption('I', options); if (boostIterations.length() != 0) { setMaxIterations(Integer.parseInt(boostIterations)); } else { setMaxIterations(10); } String thresholdString = Utils.getOption('P', options); if (thresholdString.length() != 0) { setWeightThreshold(Integer.parseInt(thresholdString)); } else { setWeightThreshold(100); } setUseResampling(Utils.getFlag('Q', options)); if (m_UseResampling && (thresholdString.length() != 0)) { throw new Exception("Weight pruning with resampling"+ "not allowed."); } String seedString = Utils.getOption('S', options); if (seedString.length() != 0) { setSeed(Integer.parseInt(seedString)); } else { setSeed(1); } String subcmtyString = Utils.getOption('C', options); if (subcmtyString.length() != 0) { setNumSubCmtys(Integer.parseInt(subcmtyString)); } else { setNumSubCmtys(3); } // classifierSpec handles extra arguments for specified learner String classifierString = Utils.getOption('W', options); if(classifierString.length() == 0) { throw new Exception("A learner must be specified with the -W option."); } String [] classifierSpec = Utils.splitOptions(classifierString); if (classifierSpec.length == 0) { throw new Exception("Invalid classifier specification string"); } String classifierName = classifierSpec[0]; classifierSpec[0] = ""; setClassifier(Classifier.forName(classifierName, classifierSpec)); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] classifierOptions = new String [0]; if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) { classifierOptions = ((OptionHandler)m_Classifier).getOptions(); } String [] options = new String [classifierOptions.length + 12]; int current = 0; if (getDebug()) { options[current++] = "-D"; } if (getUseResampling()) { options[current++] = "-Q"; } else { options[current++] = "-P"; options[current++] = "" + getWeightThreshold(); } options[current++] = "-I"; options[current++] = "" + getMaxIterations(); options[current++] = "-S"; options[current++] = "" + getSeed(); options[current++] = "-C"; options[current++] = "" + getNumSubCmtys(); if (getClassifier() != null) { options[current++] = "-W"; options[current++] = getClassifier().getClass().getName(); } options[current++] = "--"; System.arraycopy(classifierOptions, 0, options, current, classifierOptions.length); current += classifierOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Set the classifier for boosting. * * @param newClassifier the Classifier to use. */ public void setClassifier(Classifier newClassifier) { m_Classifier = newClassifier; } /** * Get the classifier used as the classifier * * @return the classifier used as the classifier */ public Classifier getClassifier() { return m_Classifier; } /** * Set the maximum number of boost iterations */ public void setMaxIterations(int maxIterations) { m_MaxIterations = maxIterations; } /** * Get the maximum number of boost iterations * * @return the maximum number of boost iterations */ public int getMaxIterations() { return m_MaxIterations; } /** * Set weight threshold * * @param thresholding the percentage of weight mass used for training */ public void setWeightThreshold(int threshold) { m_WeightThreshold = threshold; } /** * Get the degree of weight thresholding * * @return the percentage of weight mass used for training */ public int getWeightThreshold() { return m_WeightThreshold; } /** * Set seed for resampling. * * @param seed the seed for resampling */ public void setSeed(int seed) { m_Seed = seed; } /** * Get seed for resampling. * * @return the seed for resampling */ public int getSeed() { return m_Seed; } /** * Set the number of sub committees to use * * @param seed the seed for resampling */ public void setNumSubCmtys(int subc) { m_NumSubCmtys = subc; } /** * Get the number of sub committees to use * * @return the seed for resampling */ public int getNumSubCmtys() { return m_NumSubCmtys; } /** * Set debugging mode * * @param debug true if debug output should be printed */ public void setDebug(boolean debug) { m_Debug = debug; } /** * Get whether debugging is turned on * * @return true if debugging output is on */ public boolean getDebug() { return m_Debug; } /** * Set resampling mode * * @param resampling true if resampling should be done */ public void setUseResampling(boolean r) { m_UseResampling = r; } /** * Get whether resampling is turned on * * @return true if resampling output is on */ public boolean getUseResampling() { return m_UseResampling; } /** * Boosting method. * * @param data the training data to be used for generating the * boosted classifier. * @exception Exception if the classifier could not be built successfully */ public void buildClassifier(Instances data) throws Exception { if (data.checkForStringAttributes()) { throw new Exception("Can't handle string attributes!"); } data = new Instances(data); data.deleteWithMissingClass(); if (data.numInstances() == 0) { throw new Exception("No train instances without class missing!"); } if (data.classAttribute().isNumeric()) { throw new Exception("MultiBoostAB can't handle a numeric class!"); } if (m_Classifier == null) { throw new Exception("A base classifier has not been specified!"); } m_NumClasses = data.numClasses(); m_Classifiers = Classifier.makeCopies(m_Classifier, getMaxIterations()); if ((!m_UseResampling) && (m_Classifier instanceof WeightedInstancesHandler)) { buildClassifierWithWeights(data); } else { buildClassifierUsingResampling(data); } } /** * Boosting method. Boosts using resampling * * @param data the training data to be used for generating the * boosted classifier. * @exception Exception if the classifier could not be built successfully */ protected void buildClassifierUsingResampling(Instances data) throws Exception { Instances trainData, sample, training; double epsilon, reweight, beta = 0, sumProbs; double oldSumOfWeights, newSumOfWeights; Evaluation evaluation; int numInstances = data.numInstances(); Random randomInstance = new Random(m_Seed); Random random = new Random(m_Seed); double[] probabilities; int resamplingIterations = 0; int k, l; double subCmtySize = m_Classifiers.length / (double)m_NumSubCmtys; int subCmtyNum = 1; // Initialize data m_Betas = new double [m_Classifiers.length]; m_NumIterations = 0; // Create a copy of the data so that when the weights are diddled // with it doesn't mess up the weights for anyone else training = new Instances(data, 0, numInstances); sumProbs = training.sumOfWeights(); for (int i = 0; i < training.numInstances(); i++) { training.instance(i).setWeight(training.instance(i). weight() / sumProbs); } // Do boostrap iterations for (m_NumIterations = 0; m_NumIterations < m_Classifiers.length; m_NumIterations++) { if (m_Debug) { System.err.println("Training classifier " + (m_NumIterations + 1)); } // Select instances to train the classifier on if (m_WeightThreshold < 100) { trainData = selectWeightQuantile(training, (double)m_WeightThreshold / 100); } else { trainData = new Instances(training); } // Resample resamplingIterations = 0; double[] weights = new double[trainData.numInstances()]; for (int i = 0; i < weights.length; i++) { weights[i] = trainData.instance(i).weight(); } do { sample = trainData.resampleWithWeights(randomInstance, weights); // Build and evaluate classifier m_Classifiers[m_NumIterations].buildClassifier(sample); evaluation = new Evaluation(data); evaluation.evaluateModel(m_Classifiers[m_NumIterations], training); epsilon = evaluation.errorRate(); resamplingIterations++; } while (Utils.eq(epsilon, 0) && (resamplingIterations < MAX_NUM_RESAMPLING_ITERATIONS)); // Stop if error too big or 0 if (Utils.grOrEq(epsilon, 0.5) || Utils.eq(epsilon, 0)) { if (m_NumIterations == 0) { m_NumIterations = 1; // If we're the first we have to to use it } break; } // Determine the weight to assign to this model m_Betas[m_NumIterations] = beta = Math.log((1 - epsilon) / epsilon); reweight = (1 - epsilon) / epsilon; if (m_Debug) { System.err.println("\terror rate = " + epsilon +" beta = " + m_Betas[m_NumIterations]); } /* MB routine */ if (m_NumIterations >= (subCmtyNum * subCmtySize - 1)) { subCmtyNum++; if (m_Debug) { System.err.println("Starting sub-committee " + subCmtyNum); } // Randomly set the weights of the training instances to the poisson distributon for (int i = 0; i < training.numInstances(); i++) { training.instance(i).setWeight( - Math.log((random.nextDouble() * 9999) / 10000) ); } // Renormailise weights sumProbs = training.sumOfWeights(); for (int i = 0; i < training.numInstances(); i++) { training.instance(i).setWeight(training.instance(i).weight() / sumProbs); } } else { // Update instance weights oldSumOfWeights = training.sumOfWeights(); Enumeration enum = training.enumerateInstances(); while (enum.hasMoreElements()) { Instance instance = (Instance) enum.nextElement(); if(!Utils.eq(m_Classifiers[m_NumIterations].classifyInstance(instance), instance.classValue())) instance.setWeight(instance.weight() * reweight); } // Renormalize weights newSumOfWeights = training.sumOfWeights(); enum = training.enumerateInstances(); while (enum.hasMoreElements()) { Instance instance = (Instance) enum.nextElement(); instance.setWeight(instance.weight() * oldSumOfWeights / newSumOfWeights); } } } } /** * Boosting method. Boosts any classifier that can handle weighted * instances. * * @param data the training data to be used for generating the * boosted classifier. * @exception Exception if the classifier could not be built successfully */ protected void buildClassifierWithWeights(Instances data) throws Exception { Instances trainData, training; double epsilon, reweight, beta = 0; double oldSumOfWeights, newSumOfWeights; Random random = new Random(m_Seed); Evaluation evaluation; int numInstances = data.numInstances(); double subCmtySize = m_Classifiers.length / (double)m_NumSubCmtys; int subCmtyNum = 1; double sumProbs; // Initialize data m_Betas = new double [m_Classifiers.length]; m_NumIterations = 0; // Create a copy of the data so that when the weights are diddled // with it doesn't mess up the weights for anyone else training = new Instances(data, 0, numInstances); // Do boostrap iterations for (m_NumIterations = 0; m_NumIterations < m_Classifiers.length; m_NumIterations++) { if (m_Debug) { System.err.println("Training classifier " + (m_NumIterations + 1)); } // Select instances to train the classifier on if (m_WeightThreshold < 100) { trainData = selectWeightQuantile(training, (double)m_WeightThreshold / 100); } else { trainData = new Instances(training, 0, numInstances); } // Build the classifier m_Classifiers[m_NumIterations].buildClassifier(trainData); // Evaluate the classifier evaluation = new Evaluation(data); evaluation.evaluateModel(m_Classifiers[m_NumIterations], training); epsilon = evaluation.errorRate(); // Stop if error too small or error too big and ignore this model if (Utils.grOrEq(epsilon, 0.5) || Utils.eq(epsilon, 0)) { if (m_NumIterations == 0) { m_NumIterations = 1; // If we're the first we have to to use it } break; } // Determine the weight to assign to this model m_Betas[m_NumIterations] = beta = Math.log((1 - epsilon) / epsilon); reweight = (1 - epsilon) / epsilon; if (m_Debug) { System.err.println("\terror rate = " + epsilon +" beta = " + m_Betas[m_NumIterations]); } /* MB routine */ if (m_NumIterations >= (subCmtyNum * subCmtySize - 1)) { // Randomly set the weights of the training instances to the poisson distributon subCmtyNum++; if (m_Debug) { System.err.println("Starting sub-committee " + subCmtyNum); } oldSumOfWeights = training.sumOfWeights(); for (int i = 0; i < training.numInstances(); i++) { training.instance(i).setWeight( - Math.log((random.nextDouble() * 9999) / 10000) ); } // Renormailise weights sumProbs = training.sumOfWeights(); for (int i = 0; i < training.numInstances(); i++) { training.instance(i).setWeight(training.instance(i).weight() * oldSumOfWeights / sumProbs); } } else { // Update instance weights oldSumOfWeights = training.sumOfWeights(); Enumeration enum = training.enumerateInstances(); while (enum.hasMoreElements()) { Instance instance = (Instance) enum.nextElement(); if (!Utils.eq(m_Classifiers[m_NumIterations] .classifyInstance(instance), instance.classValue())) instance.setWeight(instance.weight() * reweight); } // Renormalize weights newSumOfWeights = training.sumOfWeights(); enum = training.enumerateInstances(); while (enum.hasMoreElements()) { Instance instance = (Instance) enum.nextElement(); instance.setWeight(instance.weight() * oldSumOfWeights / newSumOfWeights); } } } } /** * Calculates the class membership probabilities for the given test instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @exception Exception if instance could not be classified * successfully */ public double [] distributionForInstance(Instance instance) throws Exception { if (m_NumIterations == 0) { throw new Exception("No model built"); } double [] sums = new double [instance.numClasses()]; if (m_NumIterations == 1) { if (m_Classifiers[0] instanceof DistributionClassifier) { return ((DistributionClassifier)m_Classifiers[0]). distributionForInstance(instance); } else { sums[(int)m_Classifiers[0].classifyInstance(instance)] ++; } } else { for (int i = 0; i < m_NumIterations; i++) { sums[(int)m_Classifiers[i].classifyInstance(instance)] +=m_Betas[i]; } } Utils.normalize(sums); return sums; } /** * Returns the boosted model as Java source code. * * @return the tree as Java source code * @exception Exception if something goes wrong */ /* FIXME: Update the source code generation for MB -SB */ public String toSource(String className) throws Exception { if (m_NumIterations == 0) { throw new Exception("No model built yet"); } if (!(m_Classifiers[0] instanceof Sourcable)) { throw new Exception("Base learner " + m_Classifier.getClass().getName() + " is not Sourcable"); } StringBuffer text = new StringBuffer("class "); text.append(className).append(" {\n\n"); text.append(" public static double classify(Object [] i) {\n"); if (m_NumIterations == 1) { text.append(" return " + className + "_0.classify(i);\n"); } else { text.append(" double [] sums = new double [" + m_NumClasses + "];\n"); for (int i = 0; i < m_NumIterations; i++) { text.append(" sums[(int) " + className + '_' + i + ".classify(i)] += " + m_Betas[i] + ";\n"); } text.append(" double maxV = sums[0];\n" + " int maxI = 0;\n"+ " for (int j = 1; j < " + m_NumClasses + "; j++) {\n"+ " if (sums[j] > maxV) { maxV = sums[j]; maxI = j; }\n"+ " }\n return (double) maxI;\n"); } text.append(" }\n}\n"); for (int i = 0; i < m_Classifiers.length; i++) { text.append(((Sourcable)m_Classifiers[i]) .toSource(className + '_' + i)); } return text.toString(); } /** * Returns description of the boosted classifier. * * @return description of the boosted classifier as a string */ public String toString() { StringBuffer text = new StringBuffer(); if (m_NumIterations == 0) { text.append("MultiBoostAB: No model built yet.\n"); } else if (m_NumIterations == 1) { text.append("MultiBoostAB: No boosting possible, one classifier used!\n"); text.append(m_Classifiers[0].toString() + "\n"); } else { text.append("MultiBoostAB: Base classifiers and their weights: \n\n"); for (int i = 0; i < m_NumIterations ; i++) { text.append(m_Classifiers[i].toString() + "\n\n"); text.append("Weight: " + Utils.roundDouble(m_Betas[i], 2) + "\n\n"); } text.append("Number of performed Iterations: " + m_NumIterations + "\n"); } return text.toString(); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String [] argv) { try { System.out.println(Evaluation.evaluateModel(new MultiBoostAB(), argv)); } catch (Exception e) { System.err.println(e.getMessage()); } } }