/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * Fable.java * Copyright (C) 2003 Prem Melville * */ //!! WARNING: Under Development !! package weka.classifiers.meta; import weka.classifiers.*; import java.util.*; import weka.core.*; import weka.experiment.*; /** * FABLE is a version of DECORATE that allows for active feature * acquisition. * * DECORATE is a meta-learner for building diverse ensembles of * classifiers by adding specially constructed artificial training * examples. Comprehensive experiments have demonstrated that this * technique is consistently more accurate than bagging and more * accurate that boosting when training data is limited. For more * details see <p> * * Prem Melville and Raymond J. Mooney. <i>Constructing diverse * classifier ensembles using artificial training examples.</i> * Proceedings of the Seventeeth International Joint Conference on * Artificial Intelligence 2003.<BR><BR> * * Valid options are:<p> * * -D <br> * Turn on debugging output.<p> * * -W classname <br> * Specify the full class name of a weak classifier as the basis for * Decorate (default weka.classifiers.trees.j48.J48()).<p> * * -I num <br> * Specify the desired size of the committee (default 15). <p> * * -M iterations <br> * Set the maximum number of Decorate iterations (default 50). <p> * * -S seed <br> * Seed for random number generator. (default 0).<p> * * -R factor <br> * Factor that determines number of artificial examples to generate. <p> * * Options after -- are passed to the designated classifier.<p> * * @author Prem Melville (melville@cs.utexas.edu) */ public class Fable extends DistributionClassifier implements OptionHandler, ActiveFeatureAcquirer, ActiveLearner{ //Alternate select committee (for control experiments) protected DistributionClassifier m_SelectionCommittee = null; /** Smoothing parameter for 0-values in distributions */ protected double m_Epsilon = 0.000001; /** Set to true to get debugging output. */ protected boolean m_Debug = true; /** The model base classifier to use. */ protected Classifier m_Classifier = new weka.classifiers.trees.j48.J48(); /** Vector of classifiers that make up the committee/ensemble. */ protected Vector m_Committee = null; /** The desired ensemble size. */ protected int m_DesiredSize = 15; /** The maximum number of Decorate iterations to run. */ protected int m_NumIterations = 50; /** The seed for random number generation. */ protected int m_Seed = 0; /** Amount of artificial/random instances to use - specified as a fraction of the training data size. */ //protected double m_ArtSize = 1.0 ; protected double m_ArtSize = 0.5 ; /** The random number generator. */ protected Random m_Random = new Random(0); /** Attribute statistics - used for generating artificial examples. */ protected Vector m_AttributeStats = null; /** Enumeration of selective sampling schemes */ static final int LABEL_MARGIN = 0, RANDOM = 1, ABS_LABEL_MARGIN = 2, UNLABELED_MARGIN = 3, ENTROPY = 4; static final int MAJORITY = 0, EUCLIDEAN = 1, JENSEN_SHANNON = 2, MARGIN = 3, BAGGING = 4, BOOSTING = 5; /** The selective sampling scheme to use. **/ protected int m_SelectionScheme = LABEL_MARGIN; /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(8); newVector.addElement(new Option( "\tTurn on debugging output.", "D", 0, "-D")); newVector.addElement(new Option( "\tDesired size of ensemble.\n" + "\t(default 15)", "I", 1, "-I")); newVector.addElement(new Option( "\tMaximum number of Decorate iterations.\n" + "\t(default 50)", "M", 1, "-M")); newVector.addElement(new Option( "\tFull name of base classifier.\n" + "\t(default weka.classifiers.trees.j48.J48)", "W", 1, "-W")); newVector.addElement(new Option( "\tSeed for random number generator.\n" +"\tIf set to -1, use a random seed.\n" + "\t(default 0)", "S", 1, "-S")); newVector.addElement(new Option( "\tFactor that determines number of artificial examples to generate.\n" +"\tSpecified proportional to training set size.\n" + "\t(default 1.0)", "R", 1, "-R")); newVector.addElement(new Option( "\tSample selection scheme.\n" +"\t0=Soft, 1=Hard.\n" + "\t(default 0)", "A", 1, "-A")); if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) { newVector.addElement(new Option( "", "", 0, "\nOptions specific to classifier " + m_Classifier.getClass().getName() + ":")); Enumeration enum = ((OptionHandler)m_Classifier).listOptions(); while (enum.hasMoreElements()) { newVector.addElement(enum.nextElement()); } } return newVector.elements(); } /** * Parses a given list of options. Valid options are:<p> * * -D <br> * Turn on debugging output.<p> * * -W classname <br> * Specify the full class name of a weak classifier as the basis for * Decorate (required).<p> * * -I num <br> * Specify the desired size of the committee (default 15). <p> * * -M iterations <br> * Set the maximum number of Decorate iterations (default 50). <p> * * -S seed <br> * Seed for random number generator. (default 0).<p> * * -R factor <br> * Factor that determines number of artificial examples to generate. <p> * * Options after -- are passed to the designated classifier.<p> * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setDebug(Utils.getFlag('D', options)); String desiredSize = Utils.getOption('I', options); if (desiredSize.length() != 0) { setDesiredSize(Integer.parseInt(desiredSize)); } else { setDesiredSize(15); } String maxIterations = Utils.getOption('M', options); if (maxIterations.length() != 0) { setNumIterations(Integer.parseInt(maxIterations)); } else { setNumIterations(50); } String seed = Utils.getOption('S', options); if (seed.length() != 0) { setSeed(Integer.parseInt(seed)); } else { setSeed(0); } String artSize = Utils.getOption('R', options); if (artSize.length() != 0) { setArtificialSize(Double.parseDouble(artSize)); } else { setArtificialSize(1.0); } String selectionScheme = Utils.getOption('A', options); if (selectionScheme.length() != 0) { setSelectionScheme(Integer.parseInt(selectionScheme)); } else { setSelectionScheme(0); } String classifierName = Utils.getOption('W', options); if (classifierName.length() == 0) { throw new Exception("A classifier must be specified with" + " the -W option."); } setClassifier(Classifier.forName(classifierName, Utils.partitionOptions(options))); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] classifierOptions = new String [0]; if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) { classifierOptions = ((OptionHandler)m_Classifier).getOptions(); } String [] options = new String [classifierOptions.length + 14]; int current = 0; if (getDebug()) { options[current++] = "-D"; } options[current++] = "-S"; options[current++] = "" + getSeed(); options[current++] = "-I"; options[current++] = "" + getDesiredSize(); options[current++] = "-M"; options[current++] = "" + getNumIterations(); options[current++] = "-R"; options[current++] = "" + getArtificialSize(); options[current++] = "-A"; options[current++] = "" + getSelectionScheme(); if (getClassifier() != null) { options[current++] = "-W"; options[current++] = getClassifier().getClass().getName(); } options[current++] = "--"; System.arraycopy(classifierOptions, 0, options, current, classifierOptions.length); current += classifierOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Get the value of m_SelectionScheme. * @return value of m_SelectionScheme. */ public int getSelectionScheme() { return m_SelectionScheme; } /** * Set the value of m_SelectionScheme. * @param v Value to assign to m_SelectionScheme. */ public void setSelectionScheme(int v) { m_SelectionScheme = v; } /** * Set debugging mode * * @param debug true if debug output should be printed */ public void setDebug(boolean debug) { m_Debug = debug; } /** * Get whether debugging is turned on * * @return true if debugging output is on */ public boolean getDebug() { return m_Debug; } /** * Set the base classifier for Decorate. * * @param newClassifier the Classifier to use. */ public void setClassifier(Classifier newClassifier) { m_Classifier = newClassifier; } /** * Get the classifier used as the base classifier * * @return the classifier used as the classifier */ public Classifier getClassifier() { return m_Classifier; } /** * Factor that determines number of artificial examples to generate. * * @return factor that determines number of artificial examples to generate */ public double getArtificialSize() { return m_ArtSize; } /** * Sets factor that determines number of artificial examples to generate. * * @param newwArtSize factor that determines number of artificial examples to generate */ public void setArtificialSize(double newArtSize) { m_ArtSize = newArtSize; } /** * Gets the desired size of the committee. * * @return the desired size of the committee */ public int getDesiredSize() { return m_DesiredSize; } /** * Sets the desired size of the committee. * * @param newDesiredSize the desired size of the committee */ public void setDesiredSize(int newDesiredSize) { m_DesiredSize = newDesiredSize; } /** * Sets the max number of Decorate iterations to run. * * @param numIterations max number of Decorate iterations to run */ public void setNumIterations(int numIterations) { m_NumIterations = numIterations; } /** * Gets the max number of Decorate iterations to run. * * @return the max number of Decorate iterations to run */ public int getNumIterations() { return m_NumIterations; } /** * Set the seed for random number generator. * * @param seed the random number seed */ public void setSeed(int seed) { m_Seed = seed; if(m_Seed==-1){ m_Random = new Random(); }else{ m_Random = new Random(m_Seed); } } /** * Gets the seed for the random number generator. * * @return the seed for the random number generator */ public int getSeed() { return m_Seed; } /** * Build Decorate classifier * * @param data the training data to be used for generating the classifier * @exception Exception if the classifier could not be built successfully */ public void buildClassifier(Instances data) throws Exception { if(m_Classifier == null) { throw new Exception("A base classifier has not been specified!"); } if(data.checkForStringAttributes()) { throw new UnsupportedAttributeTypeException("Cannot handle string attributes!"); } if(data.classAttribute().isNumeric()) { throw new UnsupportedClassTypeException("Decorate can't handle a numeric class!"); } if(m_NumIterations < m_DesiredSize) throw new Exception("Max number of iterations must be >= desired ensemble size!"); trainSelectionCommittee(data); int i = 1;//current committee size int numTrials = 1;//number of Decorate iterations Instances divData = new Instances(data);//local copy of data - diversity data Instances artData = null;//artificial data //compute number of artficial instances to add at each iteration int artSize = (int) (Math.abs(m_ArtSize)*data.numInstances()); if(artSize==0) artSize=1;//atleast add one random example computeStats(data);//Compute training data stats for creating artificial examples //initialize new committee m_Committee = new Vector(); Classifier newClassifier = m_Classifier; newClassifier.buildClassifier(divData); m_Committee.add(newClassifier); double eComm = computeError(divData);//compute ensemble error //if(m_Debug) System.out.println("Initialize:\tClassifier "+i+" added to ensemble. Ensemble error = "+eComm); //repeat till desired committee size is reached OR the max number of iterations is exceeded while(i<m_DesiredSize && numTrials<m_NumIterations){ //Generate artificial training examples artData = generateArtificialData(artSize, data); //Label artificial examples labelData(artData); //Remove all the artificial data from the previous step (if any) if(divData.numInstances() > data.numInstances()) { removeInstances(divData, artSize); } addInstances(divData, artData);//Add new artificial data //Build new classifier Classifier tmp[] = Classifier.makeCopies(m_Classifier,1); newClassifier = tmp[0]; newClassifier.buildClassifier(divData); //Test if the new classifier should be added to the ensemble m_Committee.add(newClassifier);//add new classifier to current committee double currError = computeError(data); if(currError <= eComm){//adding the new member did not increase the error i++; eComm = currError; //if(m_Debug) System.out.println("Iteration: "+(1+numTrials)+"\tClassifier "+i+" added to ensemble. Ensemble error = "+eComm); }else{//reject the current classifier because it increased the ensemble error m_Committee.removeElementAt(m_Committee.size()-1);//pop the last member } numTrials++; } } //Train alternate ensemble method for use in selection protected void trainSelectionCommittee(Instances data) throws Exception{ if(m_SelectionScheme==BAGGING){ if(m_SelectionCommittee==null){//initialize Bagging System.out.println("Initializing Bagging..."); m_SelectionCommittee = new Bagging(); ((Bagging)m_SelectionCommittee).setClassifier(getClassifier()); ((Bagging)m_SelectionCommittee).setSeed(getSeed()); ((Bagging)m_SelectionCommittee).setNumIterations(getDesiredSize()); ((Bagging)m_SelectionCommittee).setBagSizePercent(100); } m_SelectionCommittee.buildClassifier(data); }else if(m_SelectionScheme==BOOSTING){ if(m_SelectionCommittee==null){//initialize Boosting System.out.println("Initializing AdaBoost..."); m_SelectionCommittee = new AdaBoostM1(); ((AdaBoostM1)m_SelectionCommittee).setClassifier(getClassifier()); ((AdaBoostM1)m_SelectionCommittee).setSeed(getSeed()); ((AdaBoostM1)m_SelectionCommittee).setMaxIterations(getDesiredSize()); } m_SelectionCommittee.buildClassifier(data); } } /** * Compute and store statistics required for generating artificial data. * * @param data training instances * @exception Exception if statistics could not be calculated successfully */ protected void computeStats(Instances data) throws Exception{ int numAttributes = data.numAttributes(); m_AttributeStats = new Vector(numAttributes);//use to map attributes to their stats for(int j=0; j<numAttributes; j++){ if(data.attribute(j).isNominal()){ //Compute the probability of occurence of each distinct value int []nomCounts = (data.attributeStats(j)).nominalCounts; double []counts = new double[nomCounts.length]; if(counts.length < 2) throw new Exception("Nominal attribute has less than two distinct values!"); //Perform Laplace smoothing for(int i=0; i<counts.length; i++) counts[i] = nomCounts[i] + 1; Utils.normalize(counts); double []stats = new double[counts.length - 1]; stats[0] = counts[0]; //Calculate cumulative probabilities for(int i=1; i<stats.length; i++) stats[i] = stats[i-1] + counts[i]; m_AttributeStats.add(j,stats); }else if(data.attribute(j).isNumeric()){ //Get mean and standard deviation from the training data double []stats = new double[2]; stats[0] = data.meanOrMode(j); stats[1] = Math.sqrt(data.variance(j)); m_AttributeStats.add(j,stats); }else System.err.println("Decorate can only handle numeric and nominal values."); } } /** * Generate artificial training examples. * @param artSize size of examples set to create * @param data training data * @return the set of unlabeled artificial examples */ protected Instances generateArtificialData(int artSize, Instances data){ int numAttributes = data.numAttributes(); Instances artData = new Instances(data, artSize); double []att; Instance artInstance; for(int i=0; i<artSize; i++){ att = new double[numAttributes]; for(int j=0; j<numAttributes; j++){ if(data.attribute(j).isNominal()){ //Select nominal value based on the frequency of occurence in the training data double []stats = (double [])m_AttributeStats.get(j); att[j] = (double) selectIndexProbabilistically(stats); } else if(data.attribute(j).isNumeric()){ //Generate numeric value from the Guassian distribution //defined by the mean and std dev of the attribute double []stats = (double [])m_AttributeStats.get(j); att[j] = (m_Random.nextGaussian()*stats[1])+stats[0]; }else System.err.println("Decorate can only handle numeric and nominal values."); } artInstance = new Instance(1.0, att); artData.add(artInstance); } return artData; } /** * Labels the artificially generated data. * * @param artData the artificially generated instances * @exception Exception if instances cannot be labeled successfully */ protected void labelData(Instances artData) throws Exception { Instance curr; double []probs; for(int i=0; i<artData.numInstances(); i++){ curr = artData.instance(i); //compute the class membership probs predicted by the current ensemble probs = distributionForInstance(curr); //select class label inversely proportional to the ensemble predictions curr.setClassValue(inverseLabel(probs)); } } /** * Select class label such that the probability of selection is * inversely proportional to the ensemble's predictions. * * @param probs class membership probabilities of instance * @return index of class label selected * @exception Exception if instances cannot be labeled successfully */ protected int inverseLabel(double []probs) throws Exception{ double []invProbs = new double[probs.length]; //Produce probability distribution inversely proportional to the given for(int i=0; i<probs.length; i++){ if(probs[i]==0){ invProbs[i] = Double.MAX_VALUE/probs.length; //Account for probability values of 0 - to avoid divide-by-zero errors //Divide by probs.length to make sure normalizing works properly }else{ invProbs[i] = 1.0 / probs[i]; } } Utils.normalize(invProbs); double []cdf = new double[invProbs.length]; //Compute cumulative probabilities cdf[0] = invProbs[0]; for(int i=1; i<invProbs.length; i++){ cdf[i] = invProbs[i]+cdf[i-1]; } if(Double.isNaN(cdf[invProbs.length-1])) System.err.println("Cumulative class membership probability is NaN!"); return selectIndexProbabilistically(cdf); } /** * Given cumulative probabilities select a nominal attribute value index * * @param cdf array of cumulative probabilities * @return index of attribute selected based on the probability distribution */ protected int selectIndexProbabilistically(double []cdf){ double rnd = m_Random.nextDouble(); int index = 0; while(index < cdf.length && rnd > cdf[index]){ index++; } return index; } /** * Removes a specified number of instances from the given set of instances. * * @param data given instances * @param numRemove number of instances to delete from the given instances */ protected void removeInstances(Instances data, int numRemove){ int num = data.numInstances(); for(int i=num - 1; i>num - 1 - numRemove;i--){ data.delete(i); } } /** * Add new instances to the given set of instances. * * @param data given instances * @param newData set of instances to add to given instances */ protected void addInstances(Instances data, Instances newData){ for(int i=0; i<newData.numInstances(); i++) data.add(newData.instance(i)); } /** * Computes the error in classification on the given data. * * @param data the instances to be classified * @return classification error * @exception Exception if error can not be computed successfully */ protected double computeError(Instances data) throws Exception { double error = 0.0; int numInstances = data.numInstances(); Instance curr; for(int i=0; i<numInstances; i++){ curr = data.instance(i); //Check if the instance has been misclassified if(curr.classValue() != ((int) classifyInstance(curr))) error++; } return (error/numInstances); } /** * Calculates the class membership probabilities for the given test instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @exception Exception if distribution can't be computed successfully */ public double[] distributionForInstance(Instance instance) throws Exception { if (instance.classAttribute().isNumeric()) { throw new UnsupportedClassTypeException("Decorate can't handle a numeric class!"); } double [] sums = new double [instance.numClasses()], newProbs; Classifier curr; for (int i = 0; i < m_Committee.size(); i++) { curr = (Classifier) m_Committee.get(i); if (curr instanceof DistributionClassifier) { newProbs = ((DistributionClassifier)curr).distributionForInstance(instance); for (int j = 0; j < newProbs.length; j++) sums[j] += newProbs[j]; } else { sums[(int)curr.classifyInstance(instance)]++; } } if (Utils.eq(Utils.sum(sums), 0)) { return sums; } else { Utils.normalize(sums); return sums; } } /** * Given a set of unlabeled examples, select a specified number of examples to be labeled. * @param activePool pool of unlabeled examples * @param num number of examples to selcted for labeling * @exception Exception if selective sampling fails */ public int [] selectInstancesForFeatures(Instances activePool,int num) throws Exception{ //Make a list of pairs of indices and the corresponding measure of informativenes of examples //Sort this in the order of informativeness and return the list of num indices int poolSize = activePool.numInstances(); Pair []pairs = new Pair[poolSize]; for(int i=0; i<poolSize; i++){ pairs[i] = new Pair(i,calculateScore(activePool.instance(i))); } //sort in AScending order Arrays.sort(pairs, new Comparator() { public int compare(Object o1, Object o2) { double diff = ((Pair)o2).second - ((Pair)o1).second; return(diff < 0 ? 1 : diff > 0 ? -1 : 0); } }); int []selected = new int[num]; if(m_Debug) System.out.println("Sorted list:"); for(int j=0; j<num; j++){ if(m_Debug) System.out.println("\t"+pairs[j].second+"\t"+pairs[j].first); selected[j] = pairs[j].first; } return selected; } /** * Calculate the feature acquisition score for * given examples depending on the chosen selection scheme. * @param instance local instances from the current pool * @return score * @exception Exception if score could not be calculated properly */ protected double calculateScore(Instance instance) throws Exception{ double score; switch(m_SelectionScheme){ case ENTROPY: score = -1.0*calculateEntropy(instance); break; case UNLABELED_MARGIN: score = calculateMargin(instance); break; case ABS_LABEL_MARGIN: score = Math.abs(calculateLabeledInstanceMargin(instance)); break; case LABEL_MARGIN: score = calculateLabeledInstanceMargin(instance); break; case RANDOM: score = 0;//all instances are equal break; default: score = 0;//all instances are equal break; } return score; } /** * Given a set of unlabeled examples, select a specified number of examples to be labeled. * @param unlabeledActivePool pool of unlabeled examples * @param num number of examples to selcted for labeling * @exception Exception if selective sampling fails */ public int [] selectInstances(Instances unlabeledActivePool,int num) throws Exception{ //Make a list of pairs of indices and the corresponding measure of informativenes of examples //Sort this in the order of informativeness and return the list of num indices int poolSize = unlabeledActivePool.numInstances(); Pair []pairs = new Pair[poolSize]; for(int i=0; i<poolSize; i++){ pairs[i] = new Pair(i,calculateDisagreement(unlabeledActivePool.instance(i))); } //sort in descending order Arrays.sort(pairs, new Comparator() { public int compare(Object o1, Object o2) { double diff = ((Pair)o1).second - ((Pair)o2).second; return(diff < 0 ? 1 : diff > 0 ? -1 : 0); } }); int []selected = new int[num]; if(m_Debug) System.out.println("Sorted list:"); for(int j=0; j<num; j++){ if(m_Debug) System.out.println("\t"+pairs[j].second+"\t"+pairs[j].first); selected[j] = pairs[j].first; } return selected; } /** * Calculate the disagreement in the ensemble over the label of * given examples depending on the chosen selection scheme. * @param instance unlabeled instance from the current pool * @return nomalized measure of disagreement * @exception Exception if disagreement could not be calculated properly */ protected double calculateDisagreement(Instance instance) throws Exception{ double disagreement; switch(m_SelectionScheme){ case JENSEN_SHANNON: disagreement = calcJSDivergence(instance); break; case MAJORITY: disagreement = calcMajorityDis(instance); break; case EUCLIDEAN: disagreement = calcEuclideanDis(instance); break; case MARGIN: //negate margins so that the sort ordering does not need to be changed disagreement = -1.0 * calculateMargin(instance); break; case BAGGING: disagreement = -1.0 * m_SelectionCommittee.calculateMargin(instance); break; case BOOSTING: disagreement = -1.0 * m_SelectionCommittee.calculateMargin(instance); break; default: disagreement = calcMajorityDis(instance); } return disagreement; } /** * Calculate the disagreement in the ensemble over the label of * given examples. The disagreement is calculated between the * posterior probabilities of each member classifier and those of * the ensemble. * @param instance unlabeled instance from the current pool * @return nomalized measure of disagreement * @exception Exception if disagreement could not be calculated properly */ protected double calcJSDivergence(Instance instance) throws Exception{ if (!(m_Classifier instanceof DistributionClassifier)) System.err.println("JS Divergence can only be applied to DistributionClassifiers."); //if(m_Debug) System.out.println("Using JS Divergence."); int size = m_Committee.size(); double [][]probs = new double [size][]; double [] avg = new double [instance.numClasses()]; Classifier curr; for (int i = 0; i < m_Committee.size(); i++) { curr = (Classifier) m_Committee.get(i); probs[i] = ((DistributionClassifier)curr).distributionForInstance(instance); smoothDistribution(probs[i]); for (int j = 0; j < avg.length; j++) avg[j] += probs[i][j]; } Utils.normalize(avg); double disagreement = 0.0; for(int i=0; i<size; i++){ disagreement += calcKLdivergence(probs[i], avg); } disagreement = disagreement/m_Committee.size(); return disagreement; } //Smooth given probability distribution to get rid of zero values protected void smoothDistribution(double []probs){ for(int i=0; i<probs.length; i++) if(probs[i]==0) probs[i] = m_Epsilon; Utils.normalize(probs); } /** * Calculate the KL divergence between two probability distributions. * @param p1 first probability disttribution * @param p1 second probability disttribution * @return the KL divergence between p1 and p2 */ protected double calcKLdivergence(double []p1, double []p2){ double kl = 0.0; for(int i=0; i<p1.length; i++){ kl += p1[i]*Math.log(p2[i]/p1[i]); } kl = -1.0 * kl; return kl; } /** * Calculate the disagreement in the ensemble over the label of * given examples. The disagreement is calculated using the * Jensen-Shannon divergence of the posterior probabilities * @param instance unlabeled instance from the current pool * @return nomalized measure of disagreement * @exception Exception if disagreement could not be calculated properly */ protected double calcEuclideanDis(Instance instance) throws Exception{ if (!(m_Classifier instanceof DistributionClassifier)) System.err.println("Euclidean disagreement can only be applied to DistributionClassifiers."); //if(m_Debug) System.out.println("Using Euclidean disagreement."); double disagreement = 0.0; double []pred = distributionForInstance(instance);//ensemble decision Classifier curr; for (int i = 0; i < m_Committee.size(); i++) { curr = (Classifier) m_Committee.get(i); double sum = 0.0; double []newProbs = ((DistributionClassifier)curr).distributionForInstance(instance); for (int j = 0; j < newProbs.length; j++) sum += Math.pow((newProbs[j]-pred[j]),2); disagreement += Math.sqrt(sum); } disagreement = disagreement/m_Committee.size(); //This normalization step is not necessary for selection, but //is useful for comparing disagreement values for different //points on the learning curves (as committee size can change) return disagreement; } /** * Calculate the disagreement in the ensemble over the label of given examples. * @param instance unlabeled instance from the current pool * @return nomalized measure of disagreement * @exception Exception if disagreement could not be calculated properly */ protected double calcMajorityDis(Instance instance) throws Exception{ //if(m_Debug) System.out.println("Using majority vote disagreement."); double disagreement = 0.0; double pred = classifyInstance(instance);//ensemble decision Classifier curr; for (int i = 0; i < m_Committee.size(); i++) { curr = (Classifier) m_Committee.get(i); if(curr.classifyInstance(instance) != pred) disagreement++; } disagreement = disagreement/m_Committee.size(); //This normalization step is not necessary for selection, but //is useful for comparing disagreement values for different //points on the learning curves (as committee size can change) return disagreement; } /** * Returns description of the Decorate classifier. * * @return description of the Decorate classifier as a string */ public String toString() { if (m_Committee == null) { return "Decorate: No model built yet."; } StringBuffer text = new StringBuffer(); text.append("Decorate base classifiers: \n\n"); for (int i = 0; i < m_Committee.size(); i++) text.append(((Classifier) m_Committee.get(i)).toString() + "\n\n"); text.append("Number of classifier in the ensemble: "+m_Committee.size()+"\n"); return text.toString(); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String [] argv) { try { System.out.println(Evaluation.evaluateModel(new Fable(), argv)); } catch (Exception e) { System.err.println(e.getMessage()); } } }