/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.tinkerpop.gremlin.process.computer.traversal.strategy.decoration; import org.apache.commons.configuration.Configuration; import org.apache.commons.configuration.MapConfiguration; import org.apache.tinkerpop.gremlin.process.computer.Computer; import org.apache.tinkerpop.gremlin.process.computer.GraphComputer; import org.apache.tinkerpop.gremlin.process.computer.traversal.step.VertexComputing; import org.apache.tinkerpop.gremlin.process.computer.traversal.step.map.ComputerResultStep; import org.apache.tinkerpop.gremlin.process.computer.traversal.step.map.ProgramVertexProgramStep; import org.apache.tinkerpop.gremlin.process.computer.traversal.step.map.TraversalVertexProgramStep; import org.apache.tinkerpop.gremlin.process.remote.traversal.strategy.decoration.RemoteStrategy; import org.apache.tinkerpop.gremlin.process.traversal.Step; import org.apache.tinkerpop.gremlin.process.traversal.Traversal; import org.apache.tinkerpop.gremlin.process.traversal.TraversalSource; import org.apache.tinkerpop.gremlin.process.traversal.TraversalStrategies; import org.apache.tinkerpop.gremlin.process.traversal.TraversalStrategy; import org.apache.tinkerpop.gremlin.process.traversal.dsl.graph.__; import org.apache.tinkerpop.gremlin.process.traversal.step.map.GraphStep; import org.apache.tinkerpop.gremlin.process.traversal.step.util.EmptyStep; import org.apache.tinkerpop.gremlin.process.traversal.strategy.AbstractTraversalStrategy; import org.apache.tinkerpop.gremlin.process.traversal.util.DefaultTraversal; import org.apache.tinkerpop.gremlin.process.traversal.util.TraversalHelper; import org.apache.tinkerpop.gremlin.structure.Edge; import org.apache.tinkerpop.gremlin.structure.Vertex; import org.apache.tinkerpop.gremlin.util.iterator.IteratorUtils; import java.util.HashMap; import java.util.HashSet; import java.util.List; import java.util.Map; import java.util.Optional; import java.util.Set; /** * @author Marko A. Rodriguez (http://markorodriguez.com) */ public final class VertexProgramStrategy extends AbstractTraversalStrategy<TraversalStrategy.DecorationStrategy> implements TraversalStrategy.DecorationStrategy { private static final VertexProgramStrategy INSTANCE = new VertexProgramStrategy(Computer.compute()); private final Computer computer; private VertexProgramStrategy() { this(null); } public VertexProgramStrategy(final Computer computer) { this.computer = computer; } @Override public void apply(final Traversal.Admin<?, ?> traversal) { // VertexPrograms can only execute at the root level of a Traversal and should not be applied locally prior to RemoteStrategy if (!(traversal.getParent() instanceof EmptyStep) || traversal.getStrategies().getStrategy(RemoteStrategy.class).isPresent()) return; // back propagate as()-labels off of vertex computing steps Step<?, ?> currentStep = traversal.getEndStep(); final Set<String> currentLabels = new HashSet<>(); while (!(currentStep instanceof EmptyStep)) { if (currentStep instanceof VertexComputing && !(currentStep instanceof ProgramVertexProgramStep)) { // todo: is there a general solution? currentLabels.addAll(currentStep.getLabels()); currentStep.getLabels().forEach(currentStep::removeLabel); } else { currentLabels.forEach(currentStep::addLabel); currentLabels.clear(); } currentStep = currentStep.getPreviousStep(); } // push GraphStep forward in the chain to reduce the number of TraversalVertexProgram compilations currentStep = traversal.getStartStep(); while (!(currentStep instanceof EmptyStep)) { if (currentStep instanceof GraphStep && currentStep.getNextStep() instanceof VertexComputing) { int index = TraversalHelper.stepIndex(currentStep.getNextStep(), traversal); traversal.removeStep(currentStep); traversal.addStep(index, currentStep); } else currentStep = currentStep.getNextStep(); } // wrap all non-VertexComputing steps into a TraversalVertexProgramStep currentStep = traversal.getStartStep(); while (!(currentStep instanceof EmptyStep)) { Traversal.Admin<?, ?> computerTraversal = new DefaultTraversal<>(); Step<?, ?> firstLegalOLAPStep = getFirstLegalOLAPStep(currentStep); Step<?, ?> lastLegalOLAPStep = getLastLegalOLAPStep(currentStep); if (!(firstLegalOLAPStep instanceof EmptyStep)) { int index = TraversalHelper.stepIndex(firstLegalOLAPStep, traversal); TraversalHelper.removeToTraversal(firstLegalOLAPStep, lastLegalOLAPStep.getNextStep(), (Traversal.Admin) computerTraversal); final TraversalVertexProgramStep traversalVertexProgramStep = new TraversalVertexProgramStep(traversal, computerTraversal); traversal.addStep(index, traversalVertexProgramStep); } currentStep = traversal.getStartStep(); while (!(currentStep instanceof EmptyStep)) { if (!(currentStep instanceof VertexComputing)) break; currentStep = currentStep.getNextStep(); } } // if the last vertex computing step is a TraversalVertexProgramStep convert to OLTP with ComputerResultStep TraversalHelper.getLastStepOfAssignableClass(VertexComputing.class, traversal).ifPresent(step -> { if (step instanceof TraversalVertexProgramStep) { final ComputerResultStep computerResultStep = new ComputerResultStep<>(traversal); ((TraversalVertexProgramStep) step).getGlobalChildren().get(0).getEndStep().getLabels().forEach(computerResultStep::addLabel); // labeling should happen in TraversalVertexProgram (perhaps MapReduce) TraversalHelper.insertAfterStep(computerResultStep, (Step) step, traversal); } }); // if there is a dangling vertex computing step, add an identity traversal (solve this in the future with a specialized MapReduce) if (traversal.getEndStep() instanceof VertexComputing && !(traversal.getEndStep() instanceof TraversalVertexProgramStep)) { final TraversalVertexProgramStep traversalVertexProgramStep = new TraversalVertexProgramStep(traversal, __.identity().asAdmin()); traversal.addStep(traversalVertexProgramStep); traversal.addStep(new ComputerResultStep<>(traversal)); } // all vertex computing steps needs the graph computer function traversal.getSteps().stream().filter(step -> step instanceof VertexComputing).forEach(step -> ((VertexComputing) step).setComputer(this.computer)); } private static Step<?, ?> getFirstLegalOLAPStep(Step<?, ?> currentStep) { while (!(currentStep instanceof EmptyStep)) { if (!(currentStep instanceof VertexComputing)) return currentStep; currentStep = currentStep.getNextStep(); } return EmptyStep.instance(); } private static Step<?, ?> getLastLegalOLAPStep(Step<?, ?> currentStep) { while (currentStep instanceof VertexComputing) currentStep = currentStep.getNextStep(); while (!(currentStep instanceof EmptyStep)) { if (currentStep instanceof VertexComputing) return currentStep.getPreviousStep(); currentStep = currentStep.getNextStep(); } return EmptyStep.instance(); } public static Optional<Computer> getComputer(final TraversalStrategies strategies) { final Optional<TraversalStrategy<?>> optional = strategies.toList().stream().filter(strategy -> strategy instanceof VertexProgramStrategy).findAny(); return optional.isPresent() ? Optional.of(((VertexProgramStrategy) optional.get()).computer) : Optional.empty(); } public void addGraphComputerStrategies(final TraversalSource traversalSource) { Class<? extends GraphComputer> graphComputerClass; if (this.computer.getGraphComputerClass().equals(GraphComputer.class)) { try { graphComputerClass = this.computer.apply(traversalSource.getGraph()).getClass(); } catch (final Exception e) { graphComputerClass = GraphComputer.class; } } else graphComputerClass = this.computer.getGraphComputerClass(); final List<TraversalStrategy<?>> graphComputerStrategies = TraversalStrategies.GlobalCache.getStrategies(graphComputerClass).toList(); traversalSource.getStrategies().addStrategies(graphComputerStrategies.toArray(new TraversalStrategy[graphComputerStrategies.size()])); } public static VertexProgramStrategy instance() { return INSTANCE; } //////////////////////////////////////////////////////////// public static final String GRAPH_COMPUTER = "graphComputer"; public static final String WORKERS = "workers"; public static final String PERSIST = "persist"; public static final String RESULT = "result"; public static final String VERTICES = "vertices"; public static final String EDGES = "edges"; @Override public Configuration getConfiguration() { final Map<String, Object> map = new HashMap<>(); map.put(GRAPH_COMPUTER, this.computer.getGraphComputerClass().getCanonicalName()); if (-1 != this.computer.getWorkers()) map.put(WORKERS, this.computer.getWorkers()); if (null != this.computer.getPersist()) map.put(PERSIST, this.computer.getPersist().name()); if (null != this.computer.getResultGraph()) map.put(RESULT, this.computer.getResultGraph().name()); if (null != this.computer.getVertices()) map.put(VERTICES, this.computer.getVertices()); if (null != this.computer.getEdges()) map.put(EDGES, this.computer.getEdges()); map.putAll(this.computer.getConfiguration()); return new MapConfiguration(map); } public static VertexProgramStrategy create(final Configuration configuration) { try { final VertexProgramStrategy.Builder builder = VertexProgramStrategy.build(); for (final String key : (List<String>) IteratorUtils.asList(configuration.getKeys())) { if (key.equals(GRAPH_COMPUTER)) builder.graphComputer((Class) Class.forName(configuration.getString(key))); else if (key.equals(WORKERS)) builder.workers(configuration.getInt(key)); else if (key.equals(PERSIST)) builder.persist(GraphComputer.Persist.valueOf(configuration.getString(key))); else if (key.equals(RESULT)) builder.result(GraphComputer.ResultGraph.valueOf(configuration.getString(key))); else if (key.equals(VERTICES)) builder.vertices((Traversal) configuration.getProperty(key)); else if (key.equals(EDGES)) builder.edges((Traversal) configuration.getProperty(key)); else builder.configure(key, configuration.getProperty(key)); } return builder.create(); } catch (final ClassNotFoundException e) { throw new IllegalArgumentException(e.getMessage(), e); } } public static Builder build() { return new Builder(); } public final static class Builder { private Computer computer = Computer.compute(); private Builder() { } public Builder computer(final Computer computer) { this.computer = computer; return this; } public Builder graphComputer(final Class<? extends GraphComputer> graphComputerClass) { this.computer = this.computer.graphComputer(graphComputerClass); return this; } public Builder configure(final String key, final Object value) { this.computer = this.computer.configure(key, value); return this; } public Builder configure(final Map<String, Object> configurations) { this.computer = this.computer.configure(configurations); return this; } public Builder workers(final int workers) { this.computer = this.computer.workers(workers); return this; } public Builder persist(final GraphComputer.Persist persist) { this.computer = this.computer.persist(persist); return this; } public Builder result(final GraphComputer.ResultGraph resultGraph) { this.computer = this.computer.result(resultGraph); return this; } public Builder vertices(final Traversal<Vertex, Vertex> vertices) { this.computer = this.computer.vertices(vertices); return this; } public Builder edges(final Traversal<Vertex, Edge> edges) { this.computer = this.computer.edges(edges); return this; } public VertexProgramStrategy create() { return new VertexProgramStrategy(this.computer); } } }