/* Copyright (C) 2002-2005 RealVNC Ltd. All Rights Reserved. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, * USA. */ // // rdr::InStream marshalls data from a buffer stored in RDR (RFB Data // Representation). // package com.iiordanov.tigervnc.rdr; abstract public class InStream { // check() ensures there is buffer data for at least one item of size // itemSize bytes. Returns the number of items in the buffer (up to a // maximum of nItems). public int check(int itemSize, int nItems, boolean wait) { int available = end - ptr; if (itemSize * nItems > available) { if (itemSize > available) return overrun(itemSize, nItems, wait); nItems = available / itemSize; } return nItems; } public int check(int itemSize, int nItems) { return check(itemSize, nItems, true); } public int check(int itemSize) { return check(itemSize, 1); } // checkNoWait() tries to make sure that the given number of bytes can // be read without blocking. It returns true if this is the case, false // otherwise. The length must be "small" (less than the buffer size). public final boolean checkNoWait(int length) { return check(length, 1, false)!=0; } // readU/SN() methods read unsigned and signed N-bit integers. public final int readS8() { check(1,1,true); return b[ptr++]; } public final int readS16() { check(2,1,true); int b0 = b[ptr++]; int b1 = b[ptr++] & 0xff; return b0 << 8 | b1; } public final int readS32() { check(4,1,true); int b0 = b[ptr++]; int b1 = b[ptr++] & 0xff; int b2 = b[ptr++] & 0xff; int b3 = b[ptr++] & 0xff; return b0 << 24 | b1 << 16 | b2 << 8 | b3; } public final int readU8() { return readS8() & 0xff; } public final int readU16() { return readS16() & 0xffff; } public final int readU32() { return readS32() & 0xffffffff; } // readString() reads a string - a U32 length followed by the data. public final String readString() { int len = readU32(); if (len > maxStringLength) throw new Exception("InStream max string length exceeded"); byte[] str = new byte[len]; readBytes(str, 0, len); String utf8string = new String(); try { utf8string = new String(str,"UTF8"); } catch(java.io.UnsupportedEncodingException e) { e.printStackTrace(); } return utf8string; } // maxStringLength protects against allocating a huge buffer. Set it // higher if you need longer strings. public static int maxStringLength = 65535; public final void skip(int bytes) { while (bytes > 0) { int n = check(1, bytes, true); ptr += n; bytes -= n; } } // readBytes() reads an exact number of bytes into an array at an offset. public void readBytes(byte[] data, int dataPtr, int length) { int dataEnd = dataPtr + length; while (dataPtr < dataEnd) { int n = check(1, dataEnd - dataPtr, true); System.arraycopy(b, ptr, data, dataPtr, n); ptr += n; dataPtr += n; } } // readOpaqueN() reads a quantity "without byte-swapping". Because java has // no byte-ordering, we just use big-endian. public final int readOpaque8() { return readU8(); } public final int readOpaque16() { return readU16(); } public final int readOpaque32() { return readU32(); } public final int readOpaque24A() { check(3, 1, true); int b0 = b[ptr++]; int b1 = b[ptr++]; int b2 = b[ptr++]; return b0 << 24 | b1 << 16 | b2 << 8; } public final int readOpaque24B() { check(3, 1, true); int b0 = b[ptr++]; int b1 = b[ptr++]; int b2 = b[ptr++]; return b0 << 16 | b1 << 8 | b2; } public final int readPixel(int bytesPerPixel, boolean bigEndian) { byte[] pix = new byte[4]; readBytes(pix, 0, bytesPerPixel); if (bigEndian) { return 0xff000000 | (pix[0] & 0xff)<<16 | (pix[1] & 0xff)<<8 | (pix[2] & 0xff); } else { return 0xff000000 | (pix[2] & 0xff)<<16 | (pix[1] & 0xff)<<8 | (pix[0] & 0xff); } } public final void readPixels(int[] buf, int length, int bytesPerPixel, boolean bigEndian) { int npixels = length*bytesPerPixel; byte[] pixels = new byte[npixels]; readBytes(pixels, 0, npixels); for (int i = 0; i < length; i++) { byte[] pix = new byte[4]; System.arraycopy(pixels, i*bytesPerPixel, pix, 0, bytesPerPixel); if (bigEndian) { buf[i] = 0xff000000 | (pix[0] & 0xff)<<16 | (pix[1] & 0xff)<<8 | (pix[2] & 0xff); } else { buf[i] = 0xff000000 | (pix[2] & 0xff)<<16 | (pix[1] & 0xff)<<8 | (pix[0] & 0xff); } } } public final int readCompactLength() { int b = readU8(); int result = b & 0x7F; if ((b & 0x80) != 0) { b = readU8(); result |= (b & 0x7F) << 7; if ((b & 0x80) != 0) { b = readU8(); result |= (b & 0xFF) << 14; } } return result; } // pos() returns the position in the stream. abstract public int pos(); // bytesAvailable() returns true if at least one byte can be read from the // stream without blocking. i.e. if false is returned then readU8() would // block. public boolean bytesAvailable() { return end != ptr; } // getbuf(), getptr(), getend() and setptr() are "dirty" methods which allow // you to manipulate the buffer directly. This is useful for a stream which // is a wrapper around an underlying stream. public final byte[] getbuf() { return b; } public final int getptr() { return ptr; } public final int getend() { return end; } public final void setptr(int p) { ptr = p; } // overrun() is implemented by a derived class to cope with buffer overrun. // It ensures there are at least itemSize bytes of buffer data. Returns // the number of items in the buffer (up to a maximum of nItems). itemSize // is supposed to be "small" (a few bytes). abstract protected int overrun(int itemSize, int nItems, boolean wait); protected InStream() {} protected byte[] b; protected int ptr; protected int end; }