/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.hbase.master.balancer; import java.util.ArrayDeque; import java.util.Arrays; import java.util.Collection; import java.util.Deque; import java.util.HashMap; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.Map.Entry; import java.util.Random; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.hbase.classification.InterfaceAudience; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.ClusterStatus; import org.apache.hadoop.hbase.HBaseInterfaceAudience; import org.apache.hadoop.hbase.HRegionInfo; import org.apache.hadoop.hbase.RegionLoad; import org.apache.hadoop.hbase.ServerLoad; import org.apache.hadoop.hbase.ServerName; import org.apache.hadoop.hbase.master.MasterServices; import org.apache.hadoop.hbase.master.RegionPlan; import org.apache.hadoop.hbase.master.balancer.BaseLoadBalancer.Cluster.Action; import org.apache.hadoop.hbase.master.balancer.BaseLoadBalancer.Cluster.Action.Type; import org.apache.hadoop.hbase.master.balancer.BaseLoadBalancer.Cluster.AssignRegionAction; import org.apache.hadoop.hbase.master.balancer.BaseLoadBalancer.Cluster.MoveRegionAction; import org.apache.hadoop.hbase.master.balancer.BaseLoadBalancer.Cluster.SwapRegionsAction; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.hbase.util.EnvironmentEdgeManager; /** * <p>This is a best effort load balancer. Given a Cost function F(C) => x It will * randomly try and mutate the cluster to Cprime. If F(Cprime) < F(C) then the * new cluster state becomes the plan. It includes costs functions to compute the cost of:</p> * <ul> * <li>Region Load</li> * <li>Table Load</li> * <li>Data Locality</li> * <li>Memstore Sizes</li> * <li>Storefile Sizes</li> * </ul> * * * <p>Every cost function returns a number between 0 and 1 inclusive; where 0 is the lowest cost * best solution, and 1 is the highest possible cost and the worst solution. The computed costs are * scaled by their respective multipliers:</p> * * <ul> * <li>hbase.master.balancer.stochastic.regionLoadCost</li> * <li>hbase.master.balancer.stochastic.moveCost</li> * <li>hbase.master.balancer.stochastic.tableLoadCost</li> * <li>hbase.master.balancer.stochastic.localityCost</li> * <li>hbase.master.balancer.stochastic.memstoreSizeCost</li> * <li>hbase.master.balancer.stochastic.storefileSizeCost</li> * </ul> * * <p>In addition to the above configurations, the balancer can be tuned by the following * configuration values:</p> * <ul> * <li>hbase.master.balancer.stochastic.maxMoveRegions which * controls what the max number of regions that can be moved in a single invocation of this * balancer.</li> * <li>hbase.master.balancer.stochastic.stepsPerRegion is the coefficient by which the number of * regions is multiplied to try and get the number of times the balancer will * mutate all servers.</li> * <li>hbase.master.balancer.stochastic.maxSteps which controls the maximum number of times that * the balancer will try and mutate all the servers. The balancer will use the minimum of this * value and the above computation.</li> * </ul> * * <p>This balancer is best used with hbase.master.loadbalance.bytable set to false * so that the balancer gets the full picture of all loads on the cluster.</p> */ @InterfaceAudience.LimitedPrivate(HBaseInterfaceAudience.CONFIG) public class StochasticLoadBalancer extends BaseLoadBalancer { protected static final String STEPS_PER_REGION_KEY = "hbase.master.balancer.stochastic.stepsPerRegion"; protected static final String MAX_STEPS_KEY = "hbase.master.balancer.stochastic.maxSteps"; protected static final String MAX_RUNNING_TIME_KEY = "hbase.master.balancer.stochastic.maxRunningTime"; protected static final String KEEP_REGION_LOADS = "hbase.master.balancer.stochastic.numRegionLoadsToRemember"; private static final Random RANDOM = new Random(System.currentTimeMillis()); private static final Log LOG = LogFactory.getLog(StochasticLoadBalancer.class); Map<String, Deque<RegionLoad>> loads = new HashMap<String, Deque<RegionLoad>>(); // values are defaults private int maxSteps = 1000000; private int stepsPerRegion = 800; private long maxRunningTime = 30 * 1000 * 1; // 30 seconds. private int numRegionLoadsToRemember = 15; private CandidateGenerator[] candidateGenerators; private CostFromRegionLoadFunction[] regionLoadFunctions; private CostFunction[] costFunctions; // Keep locality based picker and cost function to alert them // when new services are offered private LocalityBasedCandidateGenerator localityCandidateGenerator; private LocalityCostFunction localityCost; private RegionReplicaHostCostFunction regionReplicaHostCostFunction; private RegionReplicaRackCostFunction regionReplicaRackCostFunction; @Override public void onConfigurationChange(Configuration conf) { setConf(conf); } @Override public synchronized void setConf(Configuration conf) { super.setConf(conf); LOG.info("loading config"); maxSteps = conf.getInt(MAX_STEPS_KEY, maxSteps); stepsPerRegion = conf.getInt(STEPS_PER_REGION_KEY, stepsPerRegion); maxRunningTime = conf.getLong(MAX_RUNNING_TIME_KEY, maxRunningTime); numRegionLoadsToRemember = conf.getInt(KEEP_REGION_LOADS, numRegionLoadsToRemember); if (localityCandidateGenerator == null) { localityCandidateGenerator = new LocalityBasedCandidateGenerator(services); } localityCost = new LocalityCostFunction(conf, services); if (candidateGenerators == null) { candidateGenerators = new CandidateGenerator[] { new RandomCandidateGenerator(), new LoadCandidateGenerator(), localityCandidateGenerator, new RegionReplicaRackCandidateGenerator(), }; } regionLoadFunctions = new CostFromRegionLoadFunction[] { new ReadRequestCostFunction(conf), new WriteRequestCostFunction(conf), new MemstoreSizeCostFunction(conf), new StoreFileCostFunction(conf) }; regionReplicaHostCostFunction = new RegionReplicaHostCostFunction(conf); regionReplicaRackCostFunction = new RegionReplicaRackCostFunction(conf); costFunctions = new CostFunction[]{ new RegionCountSkewCostFunction(conf), new MoveCostFunction(conf), localityCost, new TableSkewCostFunction(conf), regionReplicaHostCostFunction, regionReplicaRackCostFunction, regionLoadFunctions[0], regionLoadFunctions[1], regionLoadFunctions[2], regionLoadFunctions[3], }; } @Override protected void setSlop(Configuration conf) { this.slop = conf.getFloat("hbase.regions.slop", 0.001F); } @Override public synchronized void setClusterStatus(ClusterStatus st) { super.setClusterStatus(st); updateRegionLoad(); for(CostFromRegionLoadFunction cost : regionLoadFunctions) { cost.setClusterStatus(st); } } @Override public synchronized void setMasterServices(MasterServices masterServices) { super.setMasterServices(masterServices); this.localityCost.setServices(masterServices); this.localityCandidateGenerator.setServices(masterServices); } @Override protected synchronized boolean areSomeRegionReplicasColocated(Cluster c) { regionReplicaHostCostFunction.init(c); if (regionReplicaHostCostFunction.cost() > 0) return true; regionReplicaRackCostFunction.init(c); if (regionReplicaRackCostFunction.cost() > 0) return true; return false; } /** * Given the cluster state this will try and approach an optimal balance. This * should always approach the optimal state given enough steps. */ @Override public synchronized List<RegionPlan> balanceCluster(Map<ServerName, List<HRegionInfo>> clusterState) { List<RegionPlan> plans = balanceMasterRegions(clusterState); if (plans != null || clusterState == null || clusterState.size() <= 1) { return plans; } if (masterServerName != null && clusterState.containsKey(masterServerName)) { if (clusterState.size() <= 2) { return null; } clusterState = new HashMap<ServerName, List<HRegionInfo>>(clusterState); clusterState.remove(masterServerName); } // On clusters with lots of HFileLinks or lots of reference files, // instantiating the storefile infos can be quite expensive. // Allow turning this feature off if the locality cost is not going to // be used in any computations. RegionLocationFinder finder = null; if (this.localityCost != null && this.localityCost.getMultiplier() > 0) { finder = this.regionFinder; } //The clusterState that is given to this method contains the state //of all the regions in the table(s) (that's true today) // Keep track of servers to iterate through them. Cluster cluster = new Cluster(clusterState, loads, finder, rackManager); if (!needsBalance(cluster)) { return null; } long startTime = EnvironmentEdgeManager.currentTime(); initCosts(cluster); double currentCost = computeCost(cluster, Double.MAX_VALUE); double initCost = currentCost; double newCost = currentCost; long computedMaxSteps = Math.min(this.maxSteps, ((long)cluster.numRegions * (long)this.stepsPerRegion * (long)cluster.numServers)); // Perform a stochastic walk to see if we can get a good fit. long step; for (step = 0; step < computedMaxSteps; step++) { int generatorIdx = RANDOM.nextInt(candidateGenerators.length); CandidateGenerator p = candidateGenerators[generatorIdx]; Cluster.Action action = p.generate(cluster); if (action.type == Type.NULL) { continue; } cluster.doAction(action); updateCostsWithAction(cluster, action); newCost = computeCost(cluster, currentCost); // Should this be kept? if (newCost < currentCost) { currentCost = newCost; } else { // Put things back the way they were before. // TODO: undo by remembering old values Action undoAction = action.undoAction(); cluster.doAction(undoAction); updateCostsWithAction(cluster, undoAction); } if (EnvironmentEdgeManager.currentTime() - startTime > maxRunningTime) { break; } } long endTime = EnvironmentEdgeManager.currentTime(); metricsBalancer.balanceCluster(endTime - startTime); if (initCost > currentCost) { plans = createRegionPlans(cluster); if (LOG.isDebugEnabled()) { LOG.debug("Finished computing new load balance plan. Computation took " + (endTime - startTime) + "ms to try " + step + " different iterations. Found a solution that moves " + plans.size() + " regions; Going from a computed cost of " + initCost + " to a new cost of " + currentCost); } return plans; } if (LOG.isDebugEnabled()) { LOG.debug("Could not find a better load balance plan. Tried " + step + " different configurations in " + (endTime - startTime) + "ms, and did not find anything with a computed cost less than " + initCost); } return null; } /** * Create all of the RegionPlan's needed to move from the initial cluster state to the desired * state. * * @param cluster The state of the cluster * @return List of RegionPlan's that represent the moves needed to get to desired final state. */ private List<RegionPlan> createRegionPlans(Cluster cluster) { List<RegionPlan> plans = new LinkedList<RegionPlan>(); for (int regionIndex = 0; regionIndex < cluster.regionIndexToServerIndex.length; regionIndex++) { int initialServerIndex = cluster.initialRegionIndexToServerIndex[regionIndex]; int newServerIndex = cluster.regionIndexToServerIndex[regionIndex]; if (initialServerIndex != newServerIndex) { HRegionInfo region = cluster.regions[regionIndex]; ServerName initialServer = cluster.servers[initialServerIndex]; ServerName newServer = cluster.servers[newServerIndex]; if (LOG.isTraceEnabled()) { LOG.trace("Moving Region " + region.getEncodedName() + " from server " + initialServer.getHostname() + " to " + newServer.getHostname()); } RegionPlan rp = new RegionPlan(region, initialServer, newServer); plans.add(rp); } } return plans; } /** * Store the current region loads. */ private synchronized void updateRegionLoad() { // We create a new hashmap so that regions that are no longer there are removed. // However we temporarily need the old loads so we can use them to keep the rolling average. Map<String, Deque<RegionLoad>> oldLoads = loads; loads = new HashMap<String, Deque<RegionLoad>>(); for (ServerName sn : clusterStatus.getServers()) { ServerLoad sl = clusterStatus.getLoad(sn); if (sl == null) { continue; } for (Entry<byte[], RegionLoad> entry : sl.getRegionsLoad().entrySet()) { Deque<RegionLoad> rLoads = oldLoads.get(Bytes.toString(entry.getKey())); if (rLoads == null) { // There was nothing there rLoads = new ArrayDeque<RegionLoad>(); } else if (rLoads.size() >= numRegionLoadsToRemember) { rLoads.remove(); } rLoads.add(entry.getValue()); loads.put(Bytes.toString(entry.getKey()), rLoads); } } for(CostFromRegionLoadFunction cost : regionLoadFunctions) { cost.setLoads(loads); } } protected void initCosts(Cluster cluster) { for (CostFunction c:costFunctions) { c.init(cluster); } } protected void updateCostsWithAction(Cluster cluster, Action action) { for (CostFunction c : costFunctions) { c.postAction(action); } } /** * This is the main cost function. It will compute a cost associated with a proposed cluster * state. All different costs will be combined with their multipliers to produce a double cost. * * @param cluster The state of the cluster * @param previousCost the previous cost. This is used as an early out. * @return a double of a cost associated with the proposed cluster state. This cost is an * aggregate of all individual cost functions. */ protected double computeCost(Cluster cluster, double previousCost) { double total = 0; for (CostFunction c:costFunctions) { if (c.getMultiplier() <= 0) { continue; } total += c.getMultiplier() * c.cost(); if (total > previousCost) { return total; } } return total; } /** Generates a candidate action to be applied to the cluster for cost function search */ abstract static class CandidateGenerator { abstract Cluster.Action generate(Cluster cluster); /** * From a list of regions pick a random one. Null can be returned which * {@link StochasticLoadBalancer#balanceCluster(Map)} recognize as signal to try a region move * rather than swap. * * @param cluster The state of the cluster * @param server index of the server * @param chanceOfNoSwap Chance that this will decide to try a move rather * than a swap. * @return a random {@link HRegionInfo} or null if an asymmetrical move is * suggested. */ protected int pickRandomRegion(Cluster cluster, int server, double chanceOfNoSwap) { // Check to see if this is just a move. if (cluster.regionsPerServer[server].length == 0 || RANDOM.nextFloat() < chanceOfNoSwap) { // signal a move only. return -1; } int rand = RANDOM.nextInt(cluster.regionsPerServer[server].length); return cluster.regionsPerServer[server][rand]; } protected int pickRandomServer(Cluster cluster) { if (cluster.numServers < 1) { return -1; } return RANDOM.nextInt(cluster.numServers); } protected int pickRandomRack(Cluster cluster) { if (cluster.numRacks < 1) { return -1; } return RANDOM.nextInt(cluster.numRacks); } protected int pickOtherRandomServer(Cluster cluster, int serverIndex) { if (cluster.numServers < 2) { return -1; } while (true) { int otherServerIndex = pickRandomServer(cluster); if (otherServerIndex != serverIndex) { return otherServerIndex; } } } protected int pickOtherRandomRack(Cluster cluster, int rackIndex) { if (cluster.numRacks < 2) { return -1; } while (true) { int otherRackIndex = pickRandomRack(cluster); if (otherRackIndex != rackIndex) { return otherRackIndex; } } } protected Cluster.Action pickRandomRegions(Cluster cluster, int thisServer, int otherServer) { if (thisServer < 0 || otherServer < 0) { return Cluster.NullAction; } // Decide who is most likely to need another region int thisRegionCount = cluster.getNumRegions(thisServer); int otherRegionCount = cluster.getNumRegions(otherServer); // Assign the chance based upon the above double thisChance = (thisRegionCount > otherRegionCount) ? 0 : 0.5; double otherChance = (thisRegionCount <= otherRegionCount) ? 0 : 0.5; int thisRegion = pickRandomRegion(cluster, thisServer, thisChance); int otherRegion = pickRandomRegion(cluster, otherServer, otherChance); return getAction(thisServer, thisRegion, otherServer, otherRegion); } protected Cluster.Action getAction (int fromServer, int fromRegion, int toServer, int toRegion) { if (fromServer < 0 || toServer < 0) { return Cluster.NullAction; } if (fromRegion > 0 && toRegion > 0) { return new Cluster.SwapRegionsAction(fromServer, fromRegion, toServer, toRegion); } else if (fromRegion > 0) { return new Cluster.MoveRegionAction(fromRegion, fromServer, toServer); } else if (toRegion > 0) { return new Cluster.MoveRegionAction(toRegion, toServer, fromServer); } else { return Cluster.NullAction; } } } static class RandomCandidateGenerator extends CandidateGenerator { @Override Cluster.Action generate(Cluster cluster) { int thisServer = pickRandomServer(cluster); // Pick the other server int otherServer = pickOtherRandomServer(cluster, thisServer); return pickRandomRegions(cluster, thisServer, otherServer); } } static class LoadCandidateGenerator extends CandidateGenerator { @Override Cluster.Action generate(Cluster cluster) { cluster.sortServersByRegionCount(); int thisServer = pickMostLoadedServer(cluster, -1); int otherServer = pickLeastLoadedServer(cluster, thisServer); return pickRandomRegions(cluster, thisServer, otherServer); } private int pickLeastLoadedServer(final Cluster cluster, int thisServer) { Integer[] servers = cluster.serverIndicesSortedByRegionCount; int index = 0; while (servers[index] == null || servers[index] == thisServer) { index++; if (index == servers.length) { return -1; } } return servers[index]; } private int pickMostLoadedServer(final Cluster cluster, int thisServer) { Integer[] servers = cluster.serverIndicesSortedByRegionCount; int index = servers.length - 1; while (servers[index] == null || servers[index] == thisServer) { index--; if (index < 0) { return -1; } } return servers[index]; } } static class LocalityBasedCandidateGenerator extends CandidateGenerator { private MasterServices masterServices; LocalityBasedCandidateGenerator(MasterServices masterServices) { this.masterServices = masterServices; } @Override Cluster.Action generate(Cluster cluster) { if (this.masterServices == null) { return Cluster.NullAction; } // Pick a random region server int thisServer = pickRandomServer(cluster); // Pick a random region on this server int thisRegion = pickRandomRegion(cluster, thisServer, 0.0f); if (thisRegion == -1) { return Cluster.NullAction; } // Pick the server with the highest locality int otherServer = pickHighestLocalityServer(cluster, thisServer, thisRegion); if (otherServer == -1) { return Cluster.NullAction; } // pick an region on the other server to potentially swap int otherRegion = this.pickRandomRegion(cluster, otherServer, 0.5f); return getAction(thisServer, thisRegion, otherServer, otherRegion); } private int pickHighestLocalityServer(Cluster cluster, int thisServer, int thisRegion) { int[] regionLocations = cluster.regionLocations[thisRegion]; if (regionLocations == null || regionLocations.length <= 1) { return pickOtherRandomServer(cluster, thisServer); } for (int loc : regionLocations) { if (loc >= 0 && loc != thisServer) { // find the first suitable server return loc; } } // no location found return pickOtherRandomServer(cluster, thisServer); } void setServices(MasterServices services) { this.masterServices = services; } } /** * Generates candidates which moves the replicas out of the region server for * co-hosted region replicas */ static class RegionReplicaCandidateGenerator extends CandidateGenerator { RandomCandidateGenerator randomGenerator = new RandomCandidateGenerator(); /** * Randomly select one regionIndex out of all region replicas co-hosted in the same group * (a group is a server, host or rack) * @param primariesOfRegionsPerGroup either Cluster.primariesOfRegionsPerServer, * primariesOfRegionsPerHost or primariesOfRegionsPerRack * @param regionsPerGroup either Cluster.regionsPerServer, regionsPerHost or regionsPerRack * @param regionIndexToPrimaryIndex Cluster.regionsIndexToPrimaryIndex * @return a regionIndex for the selected primary or -1 if there is no co-locating */ int selectCoHostedRegionPerGroup(int[] primariesOfRegionsPerGroup, int[] regionsPerGroup , int[] regionIndexToPrimaryIndex) { int currentPrimary = -1; int currentPrimaryIndex = -1; int selectedPrimaryIndex = -1; double currentLargestRandom = -1; // primariesOfRegionsPerGroup is a sorted array. Since it contains the primary region // ids for the regions hosted in server, a consecutive repetition means that replicas // are co-hosted for (int j = 0; j <= primariesOfRegionsPerGroup.length; j++) { int primary = j < primariesOfRegionsPerGroup.length ? primariesOfRegionsPerGroup[j] : -1; if (primary != currentPrimary) { // check for whether we see a new primary int numReplicas = j - currentPrimaryIndex; if (numReplicas > 1) { // means consecutive primaries, indicating co-location // decide to select this primary region id or not double currentRandom = RANDOM.nextDouble(); // we don't know how many region replicas are co-hosted, we will randomly select one // using reservoir sampling (http://gregable.com/2007/10/reservoir-sampling.html) if (currentRandom > currentLargestRandom) { selectedPrimaryIndex = currentPrimary; currentLargestRandom = currentRandom; } } currentPrimary = primary; currentPrimaryIndex = j; } } // we have found the primary id for the region to move. Now find the actual regionIndex // with the given primary, prefer to move the secondary region. for (int j = 0; j < regionsPerGroup.length; j++) { int regionIndex = regionsPerGroup[j]; if (selectedPrimaryIndex == regionIndexToPrimaryIndex[regionIndex]) { // always move the secondary, not the primary if (selectedPrimaryIndex != regionIndex) { return regionIndex; } } } return -1; } @Override Cluster.Action generate(Cluster cluster) { int serverIndex = pickRandomServer(cluster); if (cluster.numServers <= 1 || serverIndex == -1) { return Cluster.NullAction; } int regionIndex = selectCoHostedRegionPerGroup( cluster.primariesOfRegionsPerServer[serverIndex], cluster.regionsPerServer[serverIndex], cluster.regionIndexToPrimaryIndex); // if there are no pairs of region replicas co-hosted, default to random generator if (regionIndex == -1) { // default to randompicker return randomGenerator.generate(cluster); } int toServerIndex = pickOtherRandomServer(cluster, serverIndex); int toRegionIndex = pickRandomRegion(cluster, toServerIndex, 0.9f); return getAction (serverIndex, regionIndex, toServerIndex, toRegionIndex); } } /** * Generates candidates which moves the replicas out of the rack for * co-hosted region replicas in the same rack */ static class RegionReplicaRackCandidateGenerator extends RegionReplicaCandidateGenerator { @Override Cluster.Action generate(Cluster cluster) { int rackIndex = pickRandomRack(cluster); if (cluster.numRacks <= 1 || rackIndex == -1) { return super.generate(cluster); } int regionIndex = selectCoHostedRegionPerGroup( cluster.primariesOfRegionsPerRack[rackIndex], cluster.regionsPerRack[rackIndex], cluster.regionIndexToPrimaryIndex); // if there are no pairs of region replicas co-hosted, default to random generator if (regionIndex == -1) { // default to randompicker return randomGenerator.generate(cluster); } int serverIndex = cluster.regionIndexToServerIndex[regionIndex]; int toRackIndex = pickOtherRandomRack(cluster, rackIndex); int rand = RANDOM.nextInt(cluster.serversPerRack[toRackIndex].length); int toServerIndex = cluster.serversPerRack[toRackIndex][rand]; int toRegionIndex = pickRandomRegion(cluster, toServerIndex, 0.9f); return getAction (serverIndex, regionIndex, toServerIndex, toRegionIndex); } } /** * Base class of StochasticLoadBalancer's Cost Functions. */ abstract static class CostFunction { private float multiplier = 0; protected Cluster cluster; CostFunction(Configuration c) { } float getMultiplier() { return multiplier; } void setMultiplier(float m) { this.multiplier = m; } /** Called once per LB invocation to give the cost function * to initialize it's state, and perform any costly calculation. */ void init(Cluster cluster) { this.cluster = cluster; } /** Called once per cluster Action to give the cost function * an opportunity to update it's state. postAction() is always * called at least once before cost() is called with the cluster * that this action is performed on. */ void postAction(Action action) { switch (action.type) { case NULL: break; case ASSIGN_REGION: AssignRegionAction ar = (AssignRegionAction) action; regionMoved(ar.region, -1, ar.server); break; case MOVE_REGION: MoveRegionAction mra = (MoveRegionAction) action; regionMoved(mra.region, mra.fromServer, mra.toServer); break; case SWAP_REGIONS: SwapRegionsAction a = (SwapRegionsAction) action; regionMoved(a.fromRegion, a.fromServer, a.toServer); regionMoved(a.toRegion, a.toServer, a.fromServer); break; default: throw new RuntimeException("Uknown action:" + action.type); } } protected void regionMoved(int region, int oldServer, int newServer) { } abstract double cost(); /** * Function to compute a scaled cost using {@link DescriptiveStatistics}. It * assumes that this is a zero sum set of costs. It assumes that the worst case * possible is all of the elements in one region server and the rest having 0. * * @param stats the costs * @return a scaled set of costs. */ protected double costFromArray(double[] stats) { double totalCost = 0; double total = getSum(stats); double count = stats.length; double mean = total/count; // Compute max as if all region servers had 0 and one had the sum of all costs. This must be // a zero sum cost for this to make sense. double max = ((count - 1) * mean) + (total - mean); // It's possible that there aren't enough regions to go around double min; if (count > total) { min = ((count - total) * mean) + ((1 - mean) * total); } else { // Some will have 1 more than everything else. int numHigh = (int) (total - (Math.floor(mean) * count)); int numLow = (int) (count - numHigh); min = (numHigh * (Math.ceil(mean) - mean)) + (numLow * (mean - Math.floor(mean))); } min = Math.max(0, min); for (int i=0; i<stats.length; i++) { double n = stats[i]; double diff = Math.abs(mean - n); totalCost += diff; } double scaled = scale(min, max, totalCost); return scaled; } private double getSum(double[] stats) { double total = 0; for(double s:stats) { total += s; } return total; } /** * Scale the value between 0 and 1. * * @param min Min value * @param max The Max value * @param value The value to be scaled. * @return The scaled value. */ protected double scale(double min, double max, double value) { if (max <= min || value <= min) { return 0; } if ((max - min) == 0) return 0; return Math.max(0d, Math.min(1d, (value - min) / (max - min))); } } /** * Given the starting state of the regions and a potential ending state * compute cost based upon the number of regions that have moved. */ static class MoveCostFunction extends CostFunction { private static final String MOVE_COST_KEY = "hbase.master.balancer.stochastic.moveCost"; private static final String MAX_MOVES_PERCENT_KEY = "hbase.master.balancer.stochastic.maxMovePercent"; private static final float DEFAULT_MOVE_COST = 100; private static final int DEFAULT_MAX_MOVES = 600; private static final float DEFAULT_MAX_MOVE_PERCENT = 0.25f; private final float maxMovesPercent; MoveCostFunction(Configuration conf) { super(conf); // Move cost multiplier should be the same cost or higher than the rest of the costs to ensure // that large benefits are need to overcome the cost of a move. this.setMultiplier(conf.getFloat(MOVE_COST_KEY, DEFAULT_MOVE_COST)); // What percent of the number of regions a single run of the balancer can move. maxMovesPercent = conf.getFloat(MAX_MOVES_PERCENT_KEY, DEFAULT_MAX_MOVE_PERCENT); } @Override double cost() { // Try and size the max number of Moves, but always be prepared to move some. int maxMoves = Math.max((int) (cluster.numRegions * maxMovesPercent), DEFAULT_MAX_MOVES); double moveCost = cluster.numMovedRegions; // Don't let this single balance move more than the max moves. // This allows better scaling to accurately represent the actual cost of a move. if (moveCost > maxMoves) { return 1000000; // return a number much greater than any of the other cost } return scale(0, cluster.numRegions, moveCost); } } /** * Compute the cost of a potential cluster state from skew in number of * regions on a cluster. */ static class RegionCountSkewCostFunction extends CostFunction { private static final String REGION_COUNT_SKEW_COST_KEY = "hbase.master.balancer.stochastic.regionCountCost"; private static final float DEFAULT_REGION_COUNT_SKEW_COST = 500; private double[] stats = null; RegionCountSkewCostFunction(Configuration conf) { super(conf); // Load multiplier should be the greatest as it is the most general way to balance data. this.setMultiplier(conf.getFloat(REGION_COUNT_SKEW_COST_KEY, DEFAULT_REGION_COUNT_SKEW_COST)); } @Override double cost() { if (stats == null || stats.length != cluster.numServers) { stats = new double[cluster.numServers]; } for (int i =0; i < cluster.numServers; i++) { stats[i] = cluster.regionsPerServer[i].length; } return costFromArray(stats); } } /** * Compute the cost of a potential cluster configuration based upon how evenly * distributed tables are. */ static class TableSkewCostFunction extends CostFunction { private static final String TABLE_SKEW_COST_KEY = "hbase.master.balancer.stochastic.tableSkewCost"; private static final float DEFAULT_TABLE_SKEW_COST = 35; TableSkewCostFunction(Configuration conf) { super(conf); this.setMultiplier(conf.getFloat(TABLE_SKEW_COST_KEY, DEFAULT_TABLE_SKEW_COST)); } @Override double cost() { double max = cluster.numRegions; double min = ((double) cluster.numRegions) / cluster.numServers; double value = 0; for (int i = 0; i < cluster.numMaxRegionsPerTable.length; i++) { value += cluster.numMaxRegionsPerTable[i]; } return scale(min, max, value); } } /** * Compute a cost of a potential cluster configuration based upon where * {@link org.apache.hadoop.hbase.regionserver.StoreFile}s are located. */ static class LocalityCostFunction extends CostFunction { private static final String LOCALITY_COST_KEY = "hbase.master.balancer.stochastic.localityCost"; private static final float DEFAULT_LOCALITY_COST = 25; private MasterServices services; LocalityCostFunction(Configuration conf, MasterServices srv) { super(conf); this.setMultiplier(conf.getFloat(LOCALITY_COST_KEY, DEFAULT_LOCALITY_COST)); this.services = srv; } void setServices(MasterServices srvc) { this.services = srvc; } @Override double cost() { double max = 0; double cost = 0; // If there's no master so there's no way anything else works. if (this.services == null) { return cost; } for (int i = 0; i < cluster.regionLocations.length; i++) { max += 1; int serverIndex = cluster.regionIndexToServerIndex[i]; int[] regionLocations = cluster.regionLocations[i]; // If we can't find where the data is getTopBlock returns null. // so count that as being the best possible. if (regionLocations == null) { continue; } int index = -1; for (int j = 0; j < regionLocations.length; j++) { if (regionLocations[j] >= 0 && regionLocations[j] == serverIndex) { index = j; break; } } if (index < 0) { if (regionLocations.length > 0) { cost += 1; } } else { cost += (double) index / (double) regionLocations.length; } } return scale(0, max, cost); } } /** * Base class the allows writing costs functions from rolling average of some * number from RegionLoad. */ abstract static class CostFromRegionLoadFunction extends CostFunction { private ClusterStatus clusterStatus = null; private Map<String, Deque<RegionLoad>> loads = null; private double[] stats = null; CostFromRegionLoadFunction(Configuration conf) { super(conf); } void setClusterStatus(ClusterStatus status) { this.clusterStatus = status; } void setLoads(Map<String, Deque<RegionLoad>> l) { this.loads = l; } @Override double cost() { if (clusterStatus == null || loads == null) { return 0; } if (stats == null || stats.length != cluster.numServers) { stats = new double[cluster.numServers]; } for (int i =0; i < stats.length; i++) { //Cost this server has from RegionLoad long cost = 0; // for every region on this server get the rl for(int regionIndex:cluster.regionsPerServer[i]) { Collection<RegionLoad> regionLoadList = cluster.regionLoads[regionIndex]; // Now if we found a region load get the type of cost that was requested. if (regionLoadList != null) { cost += getRegionLoadCost(regionLoadList); } } // Add the total cost to the stats. stats[i] = cost; } // Now return the scaled cost from data held in the stats object. return costFromArray(stats); } protected double getRegionLoadCost(Collection<RegionLoad> regionLoadList) { double cost = 0; for (RegionLoad rl : regionLoadList) { double toAdd = getCostFromRl(rl); if (cost == 0) { cost = toAdd; } else { cost = (.5 * cost) + (.5 * toAdd); } } return cost; } protected abstract double getCostFromRl(RegionLoad rl); } /** * Compute the cost of total number of read requests The more unbalanced the higher the * computed cost will be. This uses a rolling average of regionload. */ static class ReadRequestCostFunction extends CostFromRegionLoadFunction { private static final String READ_REQUEST_COST_KEY = "hbase.master.balancer.stochastic.readRequestCost"; private static final float DEFAULT_READ_REQUEST_COST = 5; ReadRequestCostFunction(Configuration conf) { super(conf); this.setMultiplier(conf.getFloat(READ_REQUEST_COST_KEY, DEFAULT_READ_REQUEST_COST)); } @Override protected double getCostFromRl(RegionLoad rl) { return rl.getReadRequestsCount(); } } /** * Compute the cost of total number of write requests. The more unbalanced the higher the * computed cost will be. This uses a rolling average of regionload. */ static class WriteRequestCostFunction extends CostFromRegionLoadFunction { private static final String WRITE_REQUEST_COST_KEY = "hbase.master.balancer.stochastic.writeRequestCost"; private static final float DEFAULT_WRITE_REQUEST_COST = 5; WriteRequestCostFunction(Configuration conf) { super(conf); this.setMultiplier(conf.getFloat(WRITE_REQUEST_COST_KEY, DEFAULT_WRITE_REQUEST_COST)); } @Override protected double getCostFromRl(RegionLoad rl) { return rl.getWriteRequestsCount(); } } /** * A cost function for region replicas. We give a very high cost to hosting * replicas of the same region in the same host. We do not prevent the case * though, since if numReplicas > numRegionServers, we still want to keep the * replica open. */ static class RegionReplicaHostCostFunction extends CostFunction { private static final String REGION_REPLICA_HOST_COST_KEY = "hbase.master.balancer.stochastic.regionReplicaHostCostKey"; private static final float DEFAULT_REGION_REPLICA_HOST_COST_KEY = 100000; long maxCost = 0; long[] costsPerGroup; // group is either server, host or rack int[][] primariesOfRegionsPerGroup; public RegionReplicaHostCostFunction(Configuration conf) { super(conf); this.setMultiplier(conf.getFloat(REGION_REPLICA_HOST_COST_KEY, DEFAULT_REGION_REPLICA_HOST_COST_KEY)); } @Override void init(Cluster cluster) { super.init(cluster); // max cost is the case where every region replica is hosted together regardless of host maxCost = cluster.numHosts > 1 ? getMaxCost(cluster) : 0; costsPerGroup = new long[cluster.numHosts]; primariesOfRegionsPerGroup = cluster.multiServersPerHost // either server based or host based ? cluster.primariesOfRegionsPerHost : cluster.primariesOfRegionsPerServer; for (int i = 0 ; i < primariesOfRegionsPerGroup.length; i++) { costsPerGroup[i] = costPerGroup(primariesOfRegionsPerGroup[i]); } } long getMaxCost(Cluster cluster) { if (!cluster.hasRegionReplicas) { return 0; // short circuit } // max cost is the case where every region replica is hosted together regardless of host int[] primariesOfRegions = new int[cluster.numRegions]; System.arraycopy(cluster.regionIndexToPrimaryIndex, 0, primariesOfRegions, 0, cluster.regions.length); Arrays.sort(primariesOfRegions); // compute numReplicas from the sorted array return costPerGroup(primariesOfRegions); } @Override double cost() { if (maxCost <= 0) { return 0; } long totalCost = 0; for (int i = 0 ; i < costsPerGroup.length; i++) { totalCost += costsPerGroup[i]; } return scale(0, maxCost, totalCost); } /** * For each primary region, it computes the total number of replicas in the array (numReplicas) * and returns a sum of numReplicas-1 squared. For example, if the server hosts * regions a, b, c, d, e, f where a and b are same replicas, and c,d,e are same replicas, it * returns (2-1) * (2-1) + (3-1) * (3-1) + (1-1) * (1-1). * @param primariesOfRegions a sorted array of primary regions ids for the regions hosted * @return a sum of numReplicas-1 squared for each primary region in the group. */ protected long costPerGroup(int[] primariesOfRegions) { long cost = 0; int currentPrimary = -1; int currentPrimaryIndex = -1; // primariesOfRegions is a sorted array of primary ids of regions. Replicas of regions // sharing the same primary will have consecutive numbers in the array. for (int j = 0 ; j <= primariesOfRegions.length; j++) { int primary = j < primariesOfRegions.length ? primariesOfRegions[j] : -1; if (primary != currentPrimary) { // we see a new primary int numReplicas = j - currentPrimaryIndex; // square the cost if (numReplicas > 1) { // means consecutive primaries, indicating co-location cost += (numReplicas - 1) * (numReplicas - 1); } currentPrimary = primary; currentPrimaryIndex = j; } } return cost; } @Override protected void regionMoved(int region, int oldServer, int newServer) { if (maxCost <= 0) { return; // no need to compute } if (cluster.multiServersPerHost) { int oldHost = cluster.serverIndexToHostIndex[oldServer]; int newHost = cluster.serverIndexToHostIndex[newServer]; if (newHost != oldHost) { costsPerGroup[oldHost] = costPerGroup(cluster.primariesOfRegionsPerHost[oldHost]); costsPerGroup[newHost] = costPerGroup(cluster.primariesOfRegionsPerHost[newHost]); } } else { costsPerGroup[oldServer] = costPerGroup(cluster.primariesOfRegionsPerServer[oldServer]); costsPerGroup[newServer] = costPerGroup(cluster.primariesOfRegionsPerServer[newServer]); } } } /** * A cost function for region replicas for the rack distribution. We give a relatively high * cost to hosting replicas of the same region in the same rack. We do not prevent the case * though. */ static class RegionReplicaRackCostFunction extends RegionReplicaHostCostFunction { private static final String REGION_REPLICA_RACK_COST_KEY = "hbase.master.balancer.stochastic.regionReplicaRackCostKey"; private static final float DEFAULT_REGION_REPLICA_RACK_COST_KEY = 10000; public RegionReplicaRackCostFunction(Configuration conf) { super(conf); this.setMultiplier(conf.getFloat(REGION_REPLICA_RACK_COST_KEY, DEFAULT_REGION_REPLICA_RACK_COST_KEY)); } @Override void init(Cluster cluster) { this.cluster = cluster; if (cluster.numRacks <= 1) { maxCost = 0; return; // disabled for 1 rack } // max cost is the case where every region replica is hosted together regardless of rack maxCost = getMaxCost(cluster); costsPerGroup = new long[cluster.numRacks]; for (int i = 0 ; i < cluster.primariesOfRegionsPerRack.length; i++) { costsPerGroup[i] = costPerGroup(cluster.primariesOfRegionsPerRack[i]); } } @Override protected void regionMoved(int region, int oldServer, int newServer) { if (maxCost <= 0) { return; // no need to compute } int oldRack = cluster.serverIndexToRackIndex[oldServer]; int newRack = cluster.serverIndexToRackIndex[newServer]; if (newRack != oldRack) { costsPerGroup[oldRack] = costPerGroup(cluster.primariesOfRegionsPerRack[oldRack]); costsPerGroup[newRack] = costPerGroup(cluster.primariesOfRegionsPerRack[newRack]); } } } /** * Compute the cost of total memstore size. The more unbalanced the higher the * computed cost will be. This uses a rolling average of regionload. */ static class MemstoreSizeCostFunction extends CostFromRegionLoadFunction { private static final String MEMSTORE_SIZE_COST_KEY = "hbase.master.balancer.stochastic.memstoreSizeCost"; private static final float DEFAULT_MEMSTORE_SIZE_COST = 5; MemstoreSizeCostFunction(Configuration conf) { super(conf); this.setMultiplier(conf.getFloat(MEMSTORE_SIZE_COST_KEY, DEFAULT_MEMSTORE_SIZE_COST)); } @Override protected double getCostFromRl(RegionLoad rl) { return rl.getMemStoreSizeMB(); } } /** * Compute the cost of total open storefiles size. The more unbalanced the higher the * computed cost will be. This uses a rolling average of regionload. */ static class StoreFileCostFunction extends CostFromRegionLoadFunction { private static final String STOREFILE_SIZE_COST_KEY = "hbase.master.balancer.stochastic.storefileSizeCost"; private static final float DEFAULT_STOREFILE_SIZE_COST = 5; StoreFileCostFunction(Configuration conf) { super(conf); this.setMultiplier(conf.getFloat(STOREFILE_SIZE_COST_KEY, DEFAULT_STOREFILE_SIZE_COST)); } @Override protected double getCostFromRl(RegionLoad rl) { return rl.getStorefileSizeMB(); } } }