/* * Open Source Physics software is free software as described near the bottom of this code file. * * For additional information and documentation on Open Source Physics please see: * <http://www.opensourcephysics.org/> */ package org.opensourcephysics.display2d; import java.awt.Color; import java.awt.Graphics; import java.awt.Point; import java.awt.Transparency; import java.awt.color.ColorSpace; import java.awt.image.BandedSampleModel; import java.awt.image.BufferedImage; import java.awt.image.ComponentColorModel; import java.awt.image.DataBuffer; import java.awt.image.DataBufferByte; import java.awt.image.Raster; import java.awt.image.WritableRaster; import javax.swing.JFrame; import org.opensourcephysics.controls.OSPLog; import org.opensourcephysics.controls.XML; import org.opensourcephysics.controls.XMLControl; import org.opensourcephysics.display.DrawingPanel; import org.opensourcephysics.display.Grid; import org.opensourcephysics.display.MeasuredImage; /** * ComplexInterpolatedPlot creates an image of a scalar field by interpolating every * image pixel to an untabulated point (x,y) in the 2d data. This interpolation smooths * the resulting image. * * @author Wolfgang Christian * @created February 2, 2003 * @version 1.0 */ public class ComplexInterpolatedPlot extends MeasuredImage implements Plot2D { GridData griddata; byte[][] rgbData; Grid grid; ComplexColorMapper colorMap; boolean autoscaleZ = true; int ampIndex = 0; // amplitude index int reIndex = 1; // real index int imIndex = 2; // imaginary index int leftPix, rightPix, topPix, bottomPix; int ixsize, iysize; double top, left, bottom, right; /** * Constructs the ComplexInterpolatedPlot using the given 2d datset. * @param _griddata */ public ComplexInterpolatedPlot(GridData _griddata) { griddata = _griddata; colorMap = new ComplexColorMapper(1); if(griddata==null) { grid = new Grid(1, 1, xmin, xmax, ymin, ymax); } else { grid = new Grid(griddata.getNx(), griddata.getNy(), xmin, xmax, ymin, ymax); } grid.setColor(Color.lightGray); grid.setVisible(false); update(); } /** * Gets closest index from the given x world coordinate. * * @param x double the coordinate * @return int the index */ public int xToIndex(double x) { return griddata.xToIndex(x); } /** * Gets closest index from the given y world coordinate. * * @param y double the coordinate * @return int the index */ public int yToIndex(double y) { return griddata.yToIndex(y); } /** * Gets the x coordinate for the given index. * * @param i int * @return double the x coordinate */ public double indexToX(int i) { return griddata.indexToX(i); } /** * Gets the y coordinate for the given index. * * @param i int * @return double the y coordinate */ public double indexToY(int i) { return griddata.indexToY(i); } /** * Sets the data to new values. * * The grid is resized to fit the new data if needed. * * @param obj */ public void setAll(Object obj) { double[][][] val = (double[][][]) obj; copyComplexData(val); update(); } /** * Sets the values and the scale. * * The grid is resized to fit the new data if needed. * * @param obj array of new values * @param xmin double * @param xmax double * @param ymin double * @param ymax double */ public void setAll(Object obj, double xmin, double xmax, double ymin, double ymax) { double[][][] val = (double[][][]) obj; copyComplexData(val); if(griddata.isCellData()) { griddata.setCellScale(xmin, xmax, ymin, ymax); } else { griddata.setScale(xmin, xmax, ymin, ymax); } update(); } private void copyComplexData(double vals[][][]) { if((griddata!=null)&&!(griddata instanceof ArrayData)) { throw new IllegalStateException("SetAll only supports ArrayData for data storage."); //$NON-NLS-1$ } if((griddata==null)||(griddata.getNx()!=vals[0].length)||(griddata.getNy()!=vals[0][0].length)) { griddata = new ArrayData(vals[0].length, vals[0][0].length, 3); setGridData(griddata); } double[][] mag = griddata.getData()[0]; double[][] reData = griddata.getData()[1]; double[][] imData = griddata.getData()[2]; // current grid has correct size int ny = vals[0][0].length; for(int i = 0, nx = vals[0].length; i<nx; i++) { System.arraycopy(vals[0][i], 0, reData[i], 0, ny); System.arraycopy(vals[1][i], 0, imData[i], 0, ny); for(int j = 0; j<ny; j++) { mag[i][j] = Math.sqrt(vals[0][i][j]*vals[0][i][j]+vals[1][i][j]*vals[1][i][j]); } } } /** * Gets the GridData object. * @return GridData */ public GridData getGridData() { return griddata; } /** * Sets the data storage to the given value. * * @param _griddata the new data storage */ public void setGridData(GridData _griddata) { griddata = _griddata; if(griddata==null) { return; } Grid newgrid = new Grid(griddata.getNx(), griddata.getNy()); newgrid.setColor(Color.lightGray); if(grid!=null) { newgrid.setColor(grid.getColor()); newgrid.setVisible(grid.isVisible()); } else { newgrid.setColor(Color.lightGray); } grid = newgrid; } /** * Sets the indexes for the data components that will be plotted. * * Indexes determine the postion of the amplitude, real-component, and imaginary-component * in the data array. * * @param indexes the sample-component indexes */ public void setIndexes(int[] indexes) { ampIndex = indexes[0]; reIndex = indexes[1]; imIndex = indexes[2]; } /** * Sets the autoscale flag and the floor and ceiling values for the colors. * * If autoscaling is true, then the min and max values of z are span the colors. * * If autoscaling is false, then floor and ceiling values limit the colors. * Values below min map to the first color; values above max map to the last color. * * @param isAutoscale * @param ceil */ public void setAutoscaleZ(boolean isAutoscale, double ceil) { autoscaleZ = isAutoscale; if(autoscaleZ) { update(); } else { colorMap.setScale(ceil); } } /** * Sets the autoscale flag and the floor and ceiling values for the colors. * * If autoscaling is true, then the min and max values of z span the colors. * * If autoscaling is false, then floor and ceiling values limit the colors. * Values below min map to the first color; values above max map to the last color. * * @param isAutoscale * @param floor * @param ceil */ public void setAutoscaleZ(boolean isAutoscale, double floor, double ceil) { setAutoscaleZ(isAutoscale, ceil); } /** * Forces the z-scale to be symmetric about zero. * Not applicable in complex map because amplitude is always positive * * @param symmetric */ public void setSymmetricZ(boolean symmetric){ } /** * Gets the symmetric z flag. */ public boolean isSymmetricZ(){ return false; } /** * Gets the autoscale flag for z. * * @return boolean */ public boolean isAutoscaleZ() { return autoscaleZ; } /** * Gets the floor for scaling the z data. * @return double */ public double getFloor() { return 0; } /** * Gets the ceiling for scaling the z data. * @return double */ public double getCeiling() { return colorMap.getCeil(); } /** * Sets the floor and ceiling colors. * * @param floorColor * @param ceilColor */ public void setFloorCeilColor(Color floorColor, Color ceilColor) { colorMap.setCeilColor(ceilColor); } /** * Sets the show gridline option. * * @param showGrid */ public void setShowGridLines(boolean showGrid) { grid.setVisible(showGrid); } /** * Sets the color for grid line boundaries * * @param c */ public void setGridLineColor(Color c) { grid.setColor(c); } /** * Updates the buffered image using the data array. */ public synchronized void update() { if(autoscaleZ&&(griddata!=null)) { double[] minmax = griddata.getZRange(ampIndex); colorMap.setScale(minmax[1]); } recolorImage(); } /** * Expands the z scale so as to enhance values close to zero. * * @param expanded boolean * @param expansionFactor double */ public void setExpandedZ(boolean expanded, double expansionFactor) { if(expanded&&(expansionFactor>0)) { ZExpansion zMap = new ZExpansion(expansionFactor); colorMap.setZMap(zMap); } else { colorMap.setZMap(null); } } /** * Checks if the image is the correct size. */ protected void checkImage(DrawingPanel panel) { int lPix, rPix, bPix, tPix; if(griddata.isCellData()) { double dx = griddata.getDx(); double dy = griddata.getDy(); lPix = panel.xToPix(griddata.getLeft()-dx/2); rPix = panel.xToPix(griddata.getRight()+dx/2); bPix = panel.yToPix(griddata.getBottom()+dy/2); tPix = panel.yToPix(griddata.getTop()-dy/2); } else { lPix = panel.xToPix(griddata.getLeft()); rPix = panel.xToPix(griddata.getRight()); bPix = panel.yToPix(griddata.getBottom()); tPix = panel.yToPix(griddata.getTop()); } leftPix = Math.min(lPix, rPix); rightPix = Math.max(lPix, rPix); bottomPix = Math.max(bPix, tPix); topPix = Math.min(bPix, tPix); ixsize = rightPix-leftPix+1; iysize = bottomPix-topPix+1; leftPix = Math.max(0, leftPix); rightPix = Math.min(rightPix, panel.getWidth()); topPix = Math.max(0, topPix); bottomPix = Math.min(bottomPix, panel.getHeight()); int row = bottomPix-topPix+1; int col = rightPix-leftPix+1; if((image!=null)&&(image.getWidth()==col)&&(image.getHeight()==row)&&(left==panel.pixToX(leftPix))&&(top==panel.pixToY(topPix))&&(bottom==panel.pixToX(bottomPix))&&(right==panel.pixToY(rightPix))) { return; // image exists, has the correct location, and is the correct size } left = panel.pixToX(leftPix); top = panel.pixToY(topPix); bottom = panel.pixToX(bottomPix); right = panel.pixToY(rightPix); if((image!=null)&&(image.getWidth()==col)&&(image.getHeight()==row)) { recolorImage(); return; // image exists and is the correct size so recolor it } int size = row*col; if(size<4) { image = null; return; } OSPLog.finer("ComplexInterpolatedPlot image created with row="+row+" and col="+col); //$NON-NLS-1$ //$NON-NLS-2$ ComponentColorModel ccm = new ComponentColorModel(ColorSpace.getInstance(ColorSpace.CS_sRGB), new int[] {8, 8, 8}, false, // hasAlpha false, Transparency.OPAQUE, DataBuffer.TYPE_BYTE); BandedSampleModel csm = new BandedSampleModel(DataBuffer.TYPE_BYTE, col, row, col, new int[] {0, 1, 2}, new int[] {0, 0, 0}); rgbData = new byte[3][size]; DataBuffer databuffer = new DataBufferByte(rgbData, size); WritableRaster raster = Raster.createWritableRaster(csm, databuffer, new Point(0, 0)); image = new BufferedImage(ccm, raster, false, null); update(); } /** * Recolors the image pixels using the data array. */ protected void recolorImage() { // use references for thread safety GridData griddata = this.griddata; byte[][] rgbData = this.rgbData; BufferedImage image = this.image; if(griddata==null) { return; } if(griddata.isCellData()) { double dx = griddata.getDx(); double dy = griddata.getDy(); xmin = griddata.getLeft()-dx/2; xmax = griddata.getRight()+dx/2; ymin = griddata.getBottom()+dy/2; ymax = griddata.getTop()-dy/2; } else { xmin = griddata.getLeft(); xmax = griddata.getRight(); ymin = griddata.getBottom(); ymax = griddata.getTop(); } grid.setMinMax(xmin, xmax, ymin, ymax); if(image==null) { return; } if(rgbData[0].length!=image.getWidth()*image.getHeight()) { return; } byte[] rgb = new byte[3]; double y = top; int iw = image.getWidth(); double dx = (xmax-xmin)/(ixsize-1); double dy = (ymin-ymax)/(iysize-1); if(griddata.getDx()<0) { dx = -dx; } if(griddata.getDy()>0) { dy = -dy; } double[] samples = new double[3]; int[] indexes = new int[] {ampIndex, reIndex, imIndex}; for(int j = 0, jh = image.getHeight(); j<jh; j++) { double x = left; for(int i = 0; i<iw; i++) { colorMap.samplesToComponents(griddata.interpolate(x, y, indexes, samples), rgb); int index = (dy<0) ? j*iw+i : (jh-j-1)*iw+i; rgbData[0][index] = rgb[0]; // red rgbData[1][index] = rgb[1]; // green rgbData[2][index] = rgb[2]; // blue x += dx; } y += dy; } } /** * Determines the palette type that will be used. * Not implemented. Only one palette type. * @param type */ public void setPaletteType(int type) { // Not implemented. Only one palette type. } /** * Sets the colors that will be used between the floor and ceiling values. * Not implemented. Color always maps to phase. * @param colors */ public void setColorPalette(Color[] colors) { // Not implemented. Color always maps to phase. } /** * Shows a legend of phase angle and color. */ public JFrame showLegend() { return colorMap.showLegend(); } public boolean isMeasured() { return true; // image will always be created } /** * Draws the image and the grid. * @param panel * @param g */ public synchronized void draw(DrawingPanel panel, Graphics g) { if(!visible||(griddata==null)) { return; } checkImage(panel); if(image!=null) { g.drawImage(image, leftPix, topPix, panel); //System.out.println("Drawing complex interpolated plot"); } grid.draw(panel, g); } /** * Gets an XML.ObjectLoader to save and load data for this program. * * @return the object loader */ public static XML.ObjectLoader getLoader() { return new Plot2DLoader() { public Object createObject(XMLControl control) { return new ComplexInterpolatedPlot(null); } }; } } /* * Open Source Physics software is free software; you can redistribute * it and/or modify it under the terms of the GNU General Public License (GPL) as * published by the Free Software Foundation; either version 2 of the License, * or(at your option) any later version. * * Code that uses any portion of the code in the org.opensourcephysics package * or any subpackage (subdirectory) of this package must must also be be released * under the GNU GPL license. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston MA 02111-1307 USA * or view the license online at http://www.gnu.org/copyleft/gpl.html * * Copyright (c) 2007 The Open Source Physics project * http://www.opensourcephysics.org */